15 research outputs found
Selüloz ve Soya Proteininin Gama Işınlanmış Solüsyonlarından Hazırlanan Karışım Filmler
Blend solutions of cellulose and soy protein isolate were prepared by utilizing an amine/salt solvent system. The solutions were gamma irradiated before casting blend films that have more stable molecular network than the ones cast from non-irradiated solutions. Due to irradiation, the interactions between the two polymers altered and shifted that were analyzed by infrared spectroscopy. The thermal analysis showed small differences of thermal stability between the films formed from irradiated and non-irradiated solutions. Up to 10 kGy irradiation dose on the solutions, the resulting films exhibited higher elongation at break. Furthermore, their transparency lowered. Despite their transparency, the films absorbed less water indicating the effect of gamma irradiation on the molecular structure.Selüloz ve soya proteini izolatının harman çözeltileri, bir amin/tuz çözücü sistemi kullanılarak hazırlandı. Gama ışınıyla ışınlanan çözeltilerden harman filmlerin oluşturulmuş ve ışınlanmamış filmlerden daha kararlı moleküler ağa sahip oldukları gözlenmiştir. Işınlama bağlı olarak, kızılötesi spektroskopi ile analiz edilen iki polimer arasındaki etkileşimler değişti ve yayıldı. Termal analiz, ışınlanmış ve ışınlanmamış çözeltilerden oluşturulan filmler arasında küçük termal kararlılık farkları gösterdi. 10 kGy ışınlama dozu uygulanan solüsyonlardan elde edilen filmler kopmada daha yüksek uzama göstermiştir. Dahası, filmlerin şeffaflıkları azaldığı gözlendi. Şeffaflıklarındaki değişime rağmen, filmler, gama ışımasının moleküler yapı üzerindeki etkisi dolayısıyla daha az su emdiler
Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications
ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning–electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.99%) against both the Gram-negative Escherichia coli and Gram-positive Bacillus cereus bacteria. In addition, they exhibited good detoxifying efficiency (95%) against paraoxon, a simulant of highly toxic chemicals. ZnO/Nylon 6 nanofiber mats were also deposited onto nylon/cotton woven fabrics and the nanofiber mats did not significantly affect the moisture vapor transmission rates and air permeability values of the fabrics. Therefore, ZnO/Nylon 6 nanofiber mats prepared by the electrospinning–electrospraying hybrid process are promising material candidates for protective applications
Recommended from our members
Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor
Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER
Recommended from our members
On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor
IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs
Simulation of the plasma sheath dynamics in a spherical plasma focus
A two concentric electrodes spherical plasma focus device is simulated using a snow plow model, depending on the momentum, circuit and shock wave equations. In the spherical plasma focus, the magnetic pressure for constant discharge current is higher at the system antipodal point as compared to that at the equator. The simulation phases include a run down phase with expansion from the first antipodal to the equator, then a compression from the equator point to the second antipodal point, and finally a reflection of the shock wave on the axis. The results show that the spherical plasma focus model is in good agreement with published experimental results of the plasma parameters such as the discharge current and current derivative. Plasma parameters and the effect of the variation in the gas pressure and discharge voltage were obtained for hydrogen, deuterium and tritium. The energy deposited into the plasma sheath and the power deposited into the plasma focus tube are calculated. The basic calculation of the current fraction is also included in this study