342 research outputs found

    Optimizations for real-time implementation of H264/AVC video encoder on DSP processor

    Get PDF
    International audienceReal-time H.264/AVC high definition video encoding represents a challenging workload to most existing programmable processors. The new technologies of programmable processors such as Graphic Processor Unit (GPU) and multicore Digital signal Processor (DSP) offer a very promising solution to overcome these constraints. In this paper, an optimized implementation of H264/AVC video encoder on a single core among the six cores of TMS320C6472 DSP for Common Intermediate Format (CIF) (352x288) resolution is presented in order to move afterwards to a multicore implementation for standard and high definitions (SD,HD).Algorithmic optimization is applied to the intra prediction module to reduce the computational time. Furthermore, based on the DSP architectural features, various structural and hardware optimizations are adopted to minimize external memory access. The parallelism between CPU processing and data transfers is fully exploited using an Enhanced Direct Memory Access controller (EDMA). Experimental results show that the whole proposed optimizations, on a single core running at 700 MHz for CIF resolution, improve the encoding speed by up to 42.91%. They allow reaching the real-time encoding 25 f/s without inducing any Peak Signal to Noise Ratio (PSNR) degradation or bit-rate increase and make possible to achieve real time implementation for SD and HD resolutions when exploiting multicore features

    Valuing One's Self: Medial Prefrontal Involvement in Epistemic and Emotive Investments in Self-views.

    Full text link
    peer reviewedRecent neuroimaging research has revealed that the medial prefrontal cortex (MPFC) is consistently engaged when people form mental representations of themselves. However, the precise function of this region in self-representation is not yet fully understood. Here, we investigate whether the MPFC contributes to epistemic and emotive investments in self-views, which are essential components of the self-concept that stabilize self-views and shape how one feels about oneself. Using functional magnetic resonance imaging, we show that the level of activity in the MPFC when people think about their personal traits (by judging trait adjectives for self-descriptiveness) depends on their investments in the particular self-view under consideration, as assessed by postscan rating scales. Furthermore, different forms of investments are associated with partly distinct medial prefrontal areas: a region of the dorsal MPFC is uniquely related to the degree of certainty with which a particular self-view is held (one's epistemic investment), whereas a region of the ventral MPFC responds specifically to the importance attached to this self-view (one's emotive investment). These findings provide new insight into the role of the MPFC in self-representation and suggest that the ventral MPFC confers degrees of value upon the particular conception of the self that people construct at a given moment

    Effects of α-synuclein levels on cerebral synaptic function: Validation of a novel PET radioligand for the early diagnosis of Parkinson’s disease

    Full text link
    Background In Parkinson’s disease, converging evidence supports a pathogenic role for excessive α–synuclein accumulation in synaptic terminals that may propagate back to the soma of vulnerable nerve cells such as neurons in the substantia nigra pars compacta. The resulting loss of dopaminergic terminals in the striatum can be demonstrated in vivo using 18F-Dopa-PET (positron emission tomography). However, there’s currently no validated biomarker of the progressive synaptic dysfunction in other vulnerable areas such as the cerebral cortex. Goal In this longitudinal study, we will test the hypothesis that the loss of synaptic terminals in a mouse model of excessive α–synuclein accumulation can be demonstrated in vivo before the occurrence of behavioural disturbances using 18F-UCB-H, a new PET biomarker developed at CRC. We will also test if this new imaging modality is sensitive enough to study the effect of a disease modifying therapy such as chronic physical exercise. Methods We will use microPET for the in vivo quantification of 18F-UCB-H brain uptake in 16 wild type animals and 16 transgenic (Tg) mice overexpressing human α–syn under the mThy1 promotor every 2 months. Data will be validated against post-mortem analyses after the last PET study. Predictions We predict decreased tracer uptake over time in the basal ganglia and cerebral cortex in Tg mice as compared with WT animals. Also, we predict a relationship between 18F-UCB-H uptake levels in basal ganglia and cerebral cortex and progressive alterations in both motor and cognitive functions, respectively. Further, we also expect that chronic exercise will slow down both motor and cognitive disturbances, as well as the rate of 18F-UCB-H brain uptake decreases. Conclusion If 18F-UCB-H PET proves to be a valid biomarker for the early detection of α–synuclein accumulation in the pre-clinical model of PD, the methods will tested on human clinical populations

    Typicality in the brain during semantic and episodic memory decisions

    Full text link
    Typicality is a key semantic dimension supporting the categorical organization of items based on their features. Typical items share more features with other members of their category than atypical items, which are more distinctive. Typicality influences episodic recollection. Yet, the neural substrates of this effect have never been studied. This fMRI study investigated the neural correlates of typicality during semantic and episodic memory decisions . 26 subjects performed a categorization task on typical and atypical word concept and completed a recognition memory task. During the correct recognition of old items, regions from the core recollection network were activated, and typical items were reinstated more than atypical ones in several regions including the anterior temporal lobe. Results suggest that the centrality of this region in the processing of typicality extends to memory retrieval, and that the correct retrieval of typical items requires finer-grained, item-specific, processing, possibly to resolve their greater confusability with other category members.</p

    Exploring with [18F]UCB-H the in vivo cariations in SV2A expression through the kainic acid rat model of temporal lobe epilepsy

    Get PDF
    Purpose The main purpose of this study was to understand how the positron emission tomography (PET) measure of the synaptic vesicle 2A (SV2A) protein varies in vivo during the development of temporal lobe epilepsy (TLE) in the kainic acid rat model. Procedures Twenty Sprague Dawley male rats were administered with multiple systemic doses of saline (control group, n = 5) or kainic acid (5 mg/kg/injection, epileptic group, n = 15). Both groups were scanned at the four phases of TLE (early, latent, transition, and chronic phase) with the [F-18]UCB-H PET radiotracer and T2-structural magnetic resonance imaging. At the end of the scans (3 months post-status epilepticus), rats were monitored for 7 days with electroencephalography for the detection of spontaneous electrographic seizures. Finally, the immunofluorescence staining for SV2A expression was performed. Results Control rats presented a significant increase in [F-18]UCB-H binding at the last two scans, compared with the first ones (p < 0.001). This increase existed but was lower in epileptic animals, producing significant group differences in all the phases of the disease (p < 0.028). Furthermore, the quantification of the SV2A expression in vivo with the [F-18]UCB-H radiotracer or ex vivo with immunofluorescence led to equivalent results, with a positive correlation between both. Conclusions Even if further studies in humans are required, the ability to detect a progressive decrease in SV2A expression during the development of temporal lobe epilepsy supports the use of [F-18]UCB-H as a useful tool to differentiate, in vivo, between healthy and epileptic animals along with the development of the epileptic disease

    Prevalence of increases in functional connectivity in visual, somatosensory and language areas in congenital blindness.

    Get PDF
    There is ample evidence that congenitally blind individuals rely more strongly on non-visual information compared to sighted controls when interacting with the outside world. Although brain imaging studies indicate that congenitally blind individuals recruit occipital areas when performing various non-visual and cognitive tasks, it remains unclear through which pathways this is accomplished. To address this question, we compared resting state functional connectivity in a group of congenital blind and matched sighted control subjects. We used a seed-based analysis with a priori specified regions-of-interest (ROIs) within visual, somato-sensory, auditory and language areas. Between-group comparisons revealed increased functional connectivity within both the ventral and the dorsal visual streams in blind participants, whereas connectivity between the two streams was reduced. In addition, our data revealed stronger functional connectivity in blind participants between the visual ROIs and areas implicated in language and tactile (Braille) processing such as the inferior frontal gyrus (Broca\u27s area), thalamus, supramarginal gyrus and cerebellum. The observed group differences underscore the extent of the cross-modal reorganization in the brain and the supra-modal function of the occipital cortex in congenitally blind individuals
    corecore