101 research outputs found

    Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment

    Get PDF
    Pharmaceuticals and personal care products (PPCPs) are a unique group of emerging environmental contaminants, due to their inherent ability to induce physiological effects in human at low doses. An increasing number of studies has confirmed the presence of various PPCPs in different environmental compartments, which raises concerns about the potential adverse effects to humans and wildlife. Therefore, this article reviews the current state-of-knowledge on PPCPs in the freshwater aquatic environment. The environmental risk posed by these contaminants is evaluated in light of the persistence, bioaccumulation and toxicity criteria. Available literature on the sources, transport and degradation of PPCPs in the aquatic environment are evaluated, followed by a comprehensive review of the reported concentrations of different PPCP groups in the freshwater aquatic environment (water, sediment and biota) of the five continents. Finally, future perspectives for research on PPCPs in the freshwater aquatic environment are discussed in light of the identified research gaps in current knowledge

    Are UK E-waste recycling facilities a source of environmental contamination and occupational exposure to brominated flame retardants?

    Get PDF
    Investigations into the impacts of regulated electrical and electronic waste (e-waste) recycling activities on urban environments in Europe remain rather scarce. In this study, dust samples taken both inside and outside of five UK e-waste recycling facilities were analysed for concentrations of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and hexabromocyclododecane (HBCDD). Average concentrations of ∑BFRs in dust inside and outside UK e-waste recycling facilities were 12,000 ng/g and 180 ng/g, with median concentrations of 7500 ng/g and 85 ng/g, respectively. BDE-209 and decabromodiphenyl ethane (DBDPE) were the most abundant BFRs in both indoor and kerb dust, making a combined contribution to ∑BFRs of ~90 % on average. While four out of the five studied e-waste facilities showed a lack of significant impact on BFR contamination in surrounding environment, one of the studied e-waste recycling facilities was identified as a likely source of BFR contamination to UK urban environments, with industrial activities as another potential source of NBFRs. Occupational exposure of UK e-waste recycling workers to BFRs via dust ingestion was generally lower than that estimated for e-waste recyclers from other countries, but was comparable to BFR exposure via dust ingestion of UK office workers. Our estimates suggested that health burdens posed by dust ingestion of BFRs were minimal for UK e-waste recycling workers.</p
    • …
    corecore