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Abstract 16 

While there are no regulatory fire safety obligations for polystyrene (PS) when used as 17 

packaging material, concerns exist that such packaging material may contain the flame 18 

retardant hexabromocyclododecane (HBCDD) as a result of uncontrolled recycling activities. 19 

To evaluate these concerns, we collected 50 samples of PS packaging materials from the UK 20 

and 20 from Ireland. HBCDD was detected in 63 (90 %) of samples, with concentrations in 4 21 

samples from Ireland exceeding the EU’s low POP concentration limit (LPCL) of 0.1 % 22 

above which articles may not be recycled. Moreover, 2 further samples contained HBCDD > 23 

0.01 %. While our samples were obtained in the 12 month period prior to the March 2016 24 

introduction of the EU’s 0.01 % concentration limit above which articles may not be placed 25 

on the market, our data suggest that continued monitoring is required to assess compliance 26 

with this limit value. Ratios of α vs. γ-HBCDD in our EPS packaging samples (average = 27 

0.63) exceeded significantly (p=0.025) those in EPS building insulation material samples 28 

(average = 0.24) reported previously for Ireland. This shift towards α-HBCDD in packaging 29 

EPS is consistent with the additional thermal processing experienced by recycled PS and 30 

suggests the source of HBCDD in PS packaging is recycled PS insulation foam. This is of 31 

concern owing to the higher bioavailability and lower metabolic clearance of α-HBCDD 32 

compared to the β- and γ-isomers.  33 

34 
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1. Introduction 35 

Polystyrene (PS) is widely used for thermal insulation of buildings as well as packaging for 36 

applications such as food, laboratory chemicals and electronic appliances, with a global 37 

market demand of 15 million tonnes in 2010 (Rani et al, 2014). To meet fire safety 38 

regulations, hexabromocyclododecane (HBCDD) has been used extensively throughout the 39 

world for a variety of purposes; one of the most important of which being its application at 40 

between 0.7–2.0 % w/w as an additive to impart flame retardancy to both expanded (EPS) 41 

and extruded (XPS) PS foam used to insulate buildings (European Commission, 2011; 42 

Marvin et al, 2011). As a result of this widespread use, HBCDD has been detected worldwide 43 

in a plethora of matrices, including indoor air and dust (Abdallah et al, 2008), outdoor air (Jo 44 

et al, 2017), soil (Meng et al 2011; Desborough et al, 2016), human tissues (Carignan et al, 45 

2012; Rawn et al, 2014), lake sediments, (Harrad et al, 2009; Yang et al, 2012) and fish 46 

(Harrad et al, 2009b; Tomy et al, 2008). As a result of evidence of its persistent, 47 

bioaccumulative and toxic properties as well as its propensity for long-range transport, 48 

HBCDD has been listed as a persistent organic pollutant (POP) under the United Nations 49 

Environment Programme’s Stockholm Convention on POPs (UNEP, 2014). 50 

 51 

In recent years, there has been a drive in many jurisdictions, including the European Union 52 

towards the “circular economy” in which recycling and re-use of materials is maximised to, 53 

inter alia, minimise pressure on waste disposal infrastructure. However, concerns have been 54 

raised that new applications of recycled polymeric material that in its original application had 55 

been flame-retarded, has led to the undesirable presence of restricted brominated flame 56 

retardants (BFRs) in goods such as children’s toys, food contact articles (Guzzonato et al, 57 

2017; Kuang et al, 2018; Puype et al, 2015) and PS packaging (Rani et al, 2014). To prevent 58 

contamination with BFRs of such items, the EU has introduced a low POP concentration 59 
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limit (LPCL) of 0.1 % w/w for restricted BFRs like HBCDD. Items containing restricted 60 

BFRs at concentrations exceeding the LPCL may not be recycled until their POP content has 61 

been removed to below LPCL limits. Moreover, items containing HBCDD as an 62 

unintentional contaminant (i.e. as a consequence of the use of HBCDD-containing recycled 63 

materials) at a concentration exceeding 0.01 % may after 22nd March 2016, no longer be 64 

placed on the market in the EU (European Commission, 2016). 65 

 66 

Despite the introduction of LPCLs, it is likely that a substantial quantity of FR-treated waste 67 

has already been recycled. We thus hypothesise that while PS used in packaging materials is 68 

not required to meet flame retardancy regulations, recycling of flame-retarded PS building 69 

insulation foam may lead to the presence of HBCDD in packaging materials in the EU, in 70 

similar fashion to Korea, where HBCDD was detected in ~30 PS packaging samples (Rani et 71 

al, 2014). To test this hypothesis, we measured concentrations of HBCDD in 50 samples of 72 

PS packaging materials from the UK and 20 from Ireland.  73 

 74 

2. Methods 75 

2.1. Sample collection 76 

Convenience samples of both XPS and EPS packaging were obtained by the authors in 77 

Birmingham, UK and in Galway, Ireland between October 2015 and April 2016. Table S1 78 

gives information about each sample collected. In summary, we analysed 37 EPS and 13 XPS 79 

samples from the UK, and 6 EPS and 14 XPS samples from Ireland. 80 

 81 

2.2. Sample extraction and purification 82 

Accurately weighed aliquots of the polystyrene products (~50 mg) were placed in clean, 83 

solvent-rinsed 15 mL glass test tubes.  The samples were spiked with 50 ng of 13C-α-, β- and 84 
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γ- HBCDDs (50 µL of 1 ng µL-1 solution in hexane) used as internal (surrogate) standard 85 

prior to dissolving in 2 mL of dichloromethane by vortexing for 2 min. The solvent was 86 

evaporated to incipient dryness under a gentle stream of N2 and target analytes were 87 

immediately reconstituted in 2 mL hexane by vortexing for 2 min. The hexane extract was 88 

washed with 2 mL of conc. H2SO4 by vortexing for 1 min followed by centrifugation at 3000 89 

g for 5 minutes. The organic layer was transferred to another clean tube and the acid layer 90 

was washed twice with 2 mL of hexane. The combined hexane layer was evaporated to 91 

dryness under N2 prior to reconstitution in 150 µL of methanol containing 25 pg µL-1 of d18- 92 

γ-HBCDD used a recovery determination (syringe) standard for QA/QC purposes. 93 

2.3. Instrumental analysis 94 

Separation of α−, β- and γ-HBCDD was achieved using a dual pump Shimadzu LC-20AB 95 

Prominence liquid chromatograph equipped with SIL-20A autosampler, a DGU-20A3 96 

vacuum degasser and an Agilent Pursuit XRS3 C18 reversed phase analytical column (150 97 

mm × 2 mm i.d., 3 µm particle size). A mobile phase program based upon (a) 1:1 98 

methanol/water and (b) methanol at a flow rate of 150 µL min-1 was applied for elution of the 99 

target compounds; starting at 50 % (b) then increased linearly to 100 % (b) over 4 min, held 100 

for 7 min followed by a linear decrease to 60 % (b) over 4 min, held for 1 min and finishing 101 

with 100 % (a) for 10 min. HBCDD diastereomers were baseline separated with retention 102 

times of 10.6, 11.2 and 11.7 min for α-, β- and γ-HBCDD, respectively. 103 

Mass spectrometric analysis was performed using a Sciex API 2000 triple quadrupole mass 104 

spectrometer operated in electrospray negative ionisation mode. MS/MS detection operated 105 

in the MRM mode was used for quantitative determination based on m/z 640.6�79.0, m/z 106 

652.4�79.0 and m/z 657.7�79.0 for the native, 13C-labelled and d18-labelled HBCDD 107 
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diastereomers, respectively. Specific instrumental calibration parameters are given in Table 108 

SI-2. 109 

2.4. Quality Assurance/ Quality Control (QA/QC) 110 

 111 

Recoveries (average ± standard deviation) of the 13C-labelled internal standards added to the 112 

polystyrene samples were: α-HBCDD = 87 ± 10 %, β-HBCDD 84 ± 7 % and γ-HBCDD 90 ± 113 

12 %. Detectable, but very low concentrations of α- and γ-HBCDD (i.e. <5% of those 114 

detected in samples) were obtained in two field blanks (n=6). Field blanks consisted of 115 

sodium sulfate (0.2 g) treated as a sample. Concentrations in each batch of 10 samples were 116 

thus corrected for the contamination detected in the associated field blank. Method 117 

quantitation limits (MQLs) for individual HBCDD diastereomers were governed by the field 118 

blanks (calculated as average + 3 SD of the blanks) and were 0.1 and 0.6 ng g-1, for α- and γ-119 

HBCDD, respectively. For β-HBCDD, the MQL was 0.1 ng g-1 based on a S/N ratio of 10:1. 120 

The accuracy and precision of the analytical method for HBCDD was assessed via replicate 121 

analysis (n=3) of NIST SRM 2585 (organics in indoor dust), as well as in-house reference 122 

materials (RMs) of EPS and XPS samples (n=5). These materials have previously been 123 

analysed for HBCDDs by our research group and another laboratory (NIES, Japan), the 124 

results of which are used here as indicative values. The obtained results compared favourably 125 

to the certified and indicative values (Table SI-3) indicating good accuracy of our method. 126 

Furthermore, replicate analysis of 5 samples was performed with RSD <5 % indicating good 127 

precision. 128 

 129 

3. Results and Discussion 130 

3.1. Similarities and Differences in Samples from the UK and Ireland 131 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Abdallah et al, 2017 Page 8 of 19 

Table 1 summarises the concentrations of ΣHBCDD as well as those of individual α-, β-, and 132 

γ-HBCDD diastereomers in our samples, with Table SI-1 providing concentrations in each 133 

individual sample. Of particular note, is that in 4 samples from Ireland (3 packaging 134 

“peanuts” (1 XPS and 2 EPS) and 1 packaging for laboratory glassware (XPS)), ΣHBCDD 135 

was detected at a concentration exceeding the EU’s LPCL of 0.1 % (1,000,000 µg kg-1). 136 

Moreover, a further 2 samples (1 each from the UK – packaging for laboratory equipment 137 

(EPS) - and Ireland – packaging “peanuts” (XPS)), contained HBCDD at a concentration 138 

between 0.01 % and 0.1 %. Overall therefore, 6 of our samples would not be allowed onto the 139 

EU market currently. We scrutinised our data for differences in concentrations of HBCDD in 140 

samples from Ireland with those from the UK. To do so, we used t-tests to compare log-141 

normalised concentrations between: (a) UK EPS and Irish EPS; (b) UK XPS and Irish XPS; 142 

and (c) all UK and all Irish samples. Notwithstanding the 4 Irish samples that exceeded the 143 

LPCL, no significant differences were observed between samples acquired in both countries. 144 

 145 

3.2. Do HBCDD concentrations differ between EPS and XPS? 146 

A comparable study in Korea reported HBCDD concentrations in EPS to exceed those in 147 

XPS, although some of the EPS samples in the Korean study were building insulation and 148 

thus likely to be have been intentionally treated with HBCDD to impart flame retardancy 149 

(Rani et al, 2014). We thus examined our data to see if significant differences existed 150 

between concentrations in EPS and XPS. To do so, we used a t-test to compare log-151 

normalised concentrations of ΣHBCDD in EPS and XPS samples from: (a) the UK, (b) 152 

Ireland, and (c) the UK and Ireland combined. While no significant difference (p>0.05) was 153 

observed between concentrations of HBCDD in EPS and XPS samples in Ireland; 154 

concentrations were significantly higher in EPS (average = 26,000 µg kg-1) than XPS 155 

(average 1,200 µg kg-1) in the UK samples (p<0.001), and when both countries were 156 
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combined. Overall, our data suggest that while high concentrations of HBCDD are more 157 

frequently detected in EPS, XPS can also contain elevated concentrations. Although reports 158 

indicate that HBCDD is typically applied at higher concentrations in EPS (2 %) than XPS 159 

(0.7 %) insulation foams (European Commission, 2011), the presence of elevated 160 

concentrations of HBCDD in some of our XPS samples are not surprising. This is because 161 

HBCDD levels detected in the studied samples are mainly due to uncontrolled recycling 162 

activities, which is more likely to produce randomly distributed concentrations among the 163 

different products studied, regardless of the PS type.     164 

 165 

3.3. What annual mass of HBCDD is associated with EPS and XPS packaging? 166 

The British Plastics Federation (BPF) estimated that 20,600 t of EPS and XPS were sold in 167 

the UK in 2008, and further estimated that 40 % of the PS sold in the UK was treated 168 

intentionally with HBCDD (AEA, 2010). Here we assume that this 40 % was used for 169 

building insulation foam, and furthermore, that of the total mass of EPS and XPS sold in the 170 

UK, 50 % (10,300 t) was used for packaging foam, with the rest used in minor applications 171 

such as for rigid PS material in TVs (Harrad et al, 2009a). We also assume that the quantity 172 

of PS packaging foam used in Ireland is per capita identical to that in the UK (based on 2011 173 

Census data for the UK of 63,182,000 and 2016 Irish Census data for Ireland of 4,761,185), 174 

resulting in 776 t of PS packaging foam generated each year in Ireland. If we then multiply 175 

the 5th and the 95th percentile concentrations of HBCDD we found in PS packaging from the 176 

UK (19,000 µg kg-1) and Ireland (480,000 µg kg-1) by these masses of PS packaging, we 177 

conclude that between 0.009 and 820 kg and 0.006-1,100 kg HBCDD are associated with the 178 

PS packaging produced each year in the UK and Ireland, respectively. Using the median 179 

values as a central estimate, these figures translate to 47 kg and 0.4 kg HBCDD for the UK 180 

and Ireland respectively. 181 
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 182 

The considerable uncertainties associated with these estimates are evident – not least the 183 

small sample size for Ireland – but we believe they give a reasonable preliminary estimate of 184 

the magnitude of HBCDD circulating in this product stream, despite there being no need for 185 

its presence. To place these estimates in context, they are unsurprisingly substantially lower 186 

than our recently-published estimates of the annual mass of HBCDD associated with waste 187 

building insulation foam in Ireland of 5,500 kg year-1 (Drage et al, 2018). 188 

 189 

3.4. HBCDD Diastereomer patterns – implications for HBCDD origins and environmental 190 

impacts of HBCDD in polystyrene packaging waste 191 

Figure 1, Tables 1 and SI-1 also provide information on the relative percentage abundance of 192 

the three diastereomers. It is noticeable that the relative abundance of the α-HBCDD 193 

diasteromer in all our samples (EPS and XPS combined - expressed as the α:γ ratio in Table s 194 

1 and SI-1) is - at an average of 0.83 - higher than reported for commercial HBCDD, in 195 

which the γ-diastereomer predominates (α:γ ratio <0.14) (Peled et al, 1995). We therefore 196 

hypothesised that the additional thermal processing experienced during the production of EPS 197 

and XPS when recycled PS is used will result in a greater shift towards α-HBCDD 198 

(manifested by lower α:γ ratios) than observed in first-use materials like building insulation. 199 

To test this hypothesis, we compared using a t-test, the α:γ ratios in our UK and Ireland EPS 200 

samples with those detected in 14 samples of waste EPS building insulation material sourced 201 

from Irish waste sites in 2016 in which the concentration of ΣHBCDD exceeded 1,000 mg 202 

kg-1 (average = 5,500 mg kg-1), on which basis we assumed the HBCDD present had been 203 

added intentionally to impart flame retardancy. This comparison revealed that α:γ ratios in 204 

our EPS packaging samples (average = 0.84) exceeded significantly (p=0.011) those in the 205 

EPS building insulation material samples (average = 0.24).  This substantial shift in the 206 
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diastereomer profile has potential implications for the long-term fate of HBCDD, given the 207 

aqueous solubility of α-HBCDD (49 µg L-1) exceeds that of γ-HBCDD (2.4 µg L-1) at 20 ˚C 208 

(Hunziker et al, 2004), and observations of enhanced leaching potential of α-HBCDD c.f. γ-209 

HBCDD from landfilled waste (Stubbings and Harrad, 2016). This assumes additional 210 

importance given that the bioconcentration (BCF) and biomagnification factors (BMF) of α-211 

HBCDD in various aquatic species exceed substantially those of the β- and γ-diastereomers 212 

(Harrad et al, 2009; Zhang et al, 2014). Moreover, a recent study revealed higher toxicity of 213 

α-HBCDD compared to its β- and γ-isomers in the marine copepod (Tigriopus japonicas) 214 

(Hong et al, 2017). The toxic mechanism was mainly attributed to generation of reactive 215 

oxygen species (ROS) causing higher malformation rates during embryonic development 216 

(Hong et al, 2017). Therefore, the higher contribution of α-HBCDD to ΣHBCDD measured in 217 

recycled PS products potentially poses a higher risk to the aquatic environment via a 218 

combination of higher solubility, bioaccumulation and toxic potential to marine biota.   219 

 220 

 3.5.  Implications for Human Exposure to HBCDD 221 

Human exposure arising from the presence of HBCDD in PS packaging may occur via both 222 

direct and indirect pathways. The former may occur via dermal contact (Abdallah et al, 223 

2015a), while indirect pathways include: (a) transfer of HBCDD to foodstuffs via direct 224 

contact with food packaging or disposable plates (Kuang et al, 2018), and (b) emissions of 225 

HBCDD from packaging to indoor air and dust (Rauert et al, 2016). Moreover, there is 226 

substantial potential for emissions of HBCDD from landfilled PS packaging via volatilisation 227 

and/or leaching to groundwater (Stubbings and Harrad, 2016), with further potential for 228 

environmental contamination arising via emissions from discarded PS packaging that has 229 

entered both the marine and terrestrial environment.  230 
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The observed higher contribution of α-HBCDD to ΣHBCDD in recycled PS raises concern 231 

over its human exposure implications. This is due to the reported higher dermal 232 

bioavailability (Abdallah et al., 2015a) and oral bioaccessibility of α-HBCDD compared to 233 

the β- and γ- diastereomers (Abdallah et al., 2012). In addition, in vitro metabolic studies in 234 

human liver microsomes (Erratico et al., 2016) and hepatic cell lines (Abdallah et al., 2015b) 235 

revealed the metabolic rate of α-HBCDD was less than γ-HBCDD, leading to a higher 236 

bioaccumulation potential for this diastereomer, confirmed by higher concentrations of α-237 

HBCDD detected in human milk samples (Tao et al., 2017). Collectively, our data indicate 238 

that both the concentrations and isomer profiles of HBCDD detected in recycled PS 239 

packaging material may have significant implications for human exposure to this flame 240 

retardant.    241 

   242 

Conclusions 243 

The data presented here augment significantly the global database showing that recycling of 244 

waste PS containing HBCDD has resulted in a widespread and in some cases substantial 245 

inadvertent presence of this restricted chemical in materials in which there is no legislative 246 

requirement for that presence. A concern is that even effective enforcement of current LPCL 247 

values would fail to remove most of the HBCDD associated with the packaging analysed in 248 

our study as the concentrations present do not exceed the LPCL. As a consequence, 249 

elimination of HBCDD from such packaging may take some time. Moreover, concentrations 250 

in 6 samples would currently prevent them being placed on the EU market. While recycling 251 

PS packaging material has many positive benefits, our study shows that it may bear 252 

significant risks for the environment and human exposure if prescribed concentration limits 253 

are not enforced at national and global levels. 254 

 255 
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Table 1: Statistical Summary of Concentrations (µg kg-1) of HBCDD, % Contributions 361 

to ΣΣΣΣHBCDD of Individual Diastereomers, and α:γα:γα:γα:γ-HBCDD Ratios in Polystyrene 362 

Packaging Samples from the UK and Ireland 363 

Parameter αααα-
HBCDD 

% αααα-
HBCDD 

ββββ-
HBCDD 

%  β β β β-
HBCDD 

γγγγ-
HBCDD 

% γγγγ-
HBCDD 

ΣΣΣΣHBCDD α:γ α:γ α:γ α:γ Ratio 

UK EPS  
Minimum <0.1 7 <0.1 4 <0.7 27 <0.7 0.07 
Median 3,200 26 2,100 14 7,800 58 13,000 0.44 
Average 5,300 29 3,000 14 17,000 58 26,000 0.59 

Maximum 34,000 56 22,000 20 79,000 90 130,000 2.07 
UK XPS  

Minimum <0.1 18 <0.1 4 <0.7 35 <0.7 0.0009 
Median 26 33 11 15 57 58 95 0.51 
Average 420 32 99 14 690 58 1,200 0.62 

Maximum 5,100 45 1,100 21 8,100 100 14,000 1.26 
All UK  

Minimum <0.1 7 <0.1 4 <0.7 27 <0.7 0.0009 
Median 1,700 27 590 14 2,100 58 4,600 0.45 
Average 4,000 30 2,200 14 13,000 58 19,000 0.59 

Maximum 34,000 56 22,000 21 79,000 100 135,000 2.07 
Ireland EPS  

Minimum 15 25 5 5 17 8 36 0.40 
Median 1,200 42 510 13 1,800 47 3,400 0.87 
Average 580,000 47 65,000 12 520,000 41 1,200,000 2.40 

Maximum 2,600,000 81 270,000 16 3,000,000 64 5,900,000 9.57 
Ireland XPS  

Minimum <0.1 12 <0.1 6 <0.7 30 <0.7 0.20 
Median 100 45 30 13 96 44 230 0.69 
Average 94,000 40 20,000 14 64,000 46 180,000 0.97 

Maximum 570,000 53 120,000 28 380,000 61 1,100,000 2.62 
All Ireland  

Minimum <0.1 12 <0.1 5 <0.7 8 <0.7 0.20 
Median 180 40 49 13 220 47 500 0.86 
Average 230,000 40 32,000 14 220,000 46 480,000 1.42 

Maximum 2,600,000 81 270,000 29 3,000,000 69 5,900,000 9.57 
All EPS (UK & Ireland)  

Minimum <0.1 7 <0.1 4 <0.7 8 <0.7 0.07 
Median 3,000 27 1,900 14 7,000 56 11,000 0.46 
Average 88,000 32 12,000 13 89,000 55 190,000 0.84 

Maximum 2,600,000 81 270,000 20 3,000,000 90 5,900,000 9.57 
All XPS (UK & Ireland)  

Minimum <0.1 12 <0.1 4 <0.7 20 <0.7 0.0009 
Median 30 35 14 13 68 54 120 0.64 
Average 38,000 35 9,000 14 45,000 53 92,000 0.81 

Maximum 570,000 54 120,000 29 690,000 100 1,100,000 2.62 
All UK & Ireland  

Minimum <0.1 7 <0.1 4 <0.7 8 <0.7 0.0009 
Median 1,100 30 420 14 1,200 56 2,400 0.50 
Average 69,000 33 11,000 14 72,000 54 150,000 0.83 

Maximum 2,600,000 81 270,000 29 3,000,000 100 5,900,000 9.57 

 364 
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Figure 1: Ratios of α:γα:γα:γα:γ-HBCDD in Commercial HBCDD, Building Insulation EPS, and 366 
EPS packaging 367 
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Highlights 

• HBCDD present in 90 % of Irish and UK polystyrene packaging samples 

• Concentrations of ΣHBCDD range between <0.7 µg kg-1 to 0.59 % 

• HBCDD concentrations in 6 samples would prevent them being placed on EU 

market 

• Source of HBCDD in polystyrene packaging is recycled insulation foam 

 

 


