15 research outputs found

    Blood Pressure and Blood Pressure Deficits as Predictors of Acute Kidney Injury in Vasopressor Dependent Patients Post Cardiovascular Surgery

    Get PDF
    BACKGROUND: Acute kidney injury (AKI) is a common and serious post-operative complication following cardiovascular surgery. AIM: The aim of the study was to evaluate the value of blood pressure and blood pressure deficits as predictors of AKI in post cardiovascular surgery vasopressors’ dependent patients. METHODS: A prospective observational, single center study, conducted on 100 patients requiring vasopressor support for more than 4 h after cardiovascular surgery. All included patients were subjected to the measurements of three or more systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and mean arterial pressure (MAP) readings from the ward charts before surgery and the mean of these measures was calculated, was recorded and pre-operative systolic perfusion pressure (SPP), diastolic perfusion pressure (DPP), and mean perfusion pressure (MPP) were calculated. A vasopressor-associated average values for hemodynamic pressure-related parameters (SAP, DAP, MAP, CVP, SPP, DPP, and MPP) were calculated on the 1st 24 h after admission. The percent deficit in post-operative average parameters in relation to pre-operative parameters was determined as % parameter deficit. RESULTS: The pre-operative SAP, DAP, MAP, SPP, DPP, and MPP were significantly higher in the non-AKI compared to AKI patients while pre-operative central venous pressure (CVP) was significantly higher in AKI patients. The post-operative DAP, MAP, DPP, and MPP were also higher in non-AKI and the post-operative CVP was lower in non-AKI compared to AKI patients. CONCLUSIONS: This study concluded that the relative decrease in the perfusion pressures could be significant predictors of AKI after cardiovascular surgery in vasopressor dependent patients. The higher pre- or post-operative CVP or its relative decrease after cardiac surgery was seen also to be associated with higher incidence of AKI

    Right mini-thoracotomy versus median sternotomy for mitral valve replacement

    Get PDF
    Background: The advantages of minimally invasive mitral valve surgery over the conventional approach is still debated. This study aimed to evaluate early outcomes after mitral valve replacement (MVR) using the right mini-thoracotomy (RMT) versus median sternotomy (MS). Methods: We prospectively included 60 patients who had MVR from May 2015 to June 2017. We classified patients into two groups; Group A (n= 30) had RMT, and Group B (n= 30) had MS. Postoperative pain score, wound satisfaction, and clinical and echocardiographic outcomes were compared between both groups. Results: The mean age was 39.90 ± 12.34 years in Group A and 45.75 ± 13.10 years in Group B (p= 0.08). Preoperative and echocardiographic data showed no statistical significance difference between the groups. Group A had longer aortic cross-clamp (118.85 ± 40.56 vs. 70.75 ± 24.81 minutes, p<0.001) and cardiopulmonary bypass times (186.70 ± 67.44 vs. 104.65 ± 42.60 minutes, p<0.001).  Group B had more blood loss (565 ± 344.3 vs. 241.5 ±89.16 ml/24 hours, p<0.001). The median pain score was 1 (range: 1- 3) in Group A and 4 (2- 8) in Group B (p<0.001), and the median wound satisfaction was 1.5 (1- 4) in Group A and 4 (1- 7) in Group B (p<0.001).  Wound infection occurred in 1 (3.3%) patient in Group A and 6 (20%) patients in Group B (p=0.04). Conclusion: Mitral valve replacement through the right mini-thoracotomy could be a safe alternative to median sternotomy. The right mini-thoracotomy was associated with longer operative times but better pain and wound satisfaction scores and lower wound infection

    A Novel Classification Model of Date Fruit Dataset Using Deep Transfer Learning

    No full text
    Date fruits are the most common fruit in the Middle East and North Africa. There are a wide variety of dates with different types, colors, shapes, tastes, and nutritional values. Classifying, identifying, and recognizing dates would play a crucial role in the agriculture, commercial, food, and health sectors. Nevertheless, there is no or limited work to collect a reliable dataset for many classes. In this paper, we collected the dataset of date fruits by picturing dates from primary environments: farms and shops (e.g., online or local markets). The combined dataset is unique due to the multiplicity of items. To our knowledge, no dataset contains the same number of classes from natural environments. The collected dataset has 27 classes with 3228 images. The experimental results presented are based on five stages. The first stage applied traditional machine learning algorithms for measuring the accuracy of features based on pixel intensity and color distribution. The second stage applied a deep transfer learning (TL) model to select the best model accuracy of date classification. In the third stage, the feature extraction part of the model was fine-tuned by applying different retrained points to select the best retraining point. In the fourth stage, the fully connected layer of the model was fine-tuned to achieve the best classification configurations of the model. In the fifth stage, regularization was applied to the classification layer of the best-selected model from the fourth stage, where the validation accuracy reached 97.21% and the best test accuracy was 95.21%

    Development of Antimicrobial Laser-Induced Photodynamic Therapy Based on Ethylcellulose/Chitosan Nanocomposite with 5,10,15,20-Tetrakis(m-Hydroxyphenyl)porphyrin

    No full text
    The development of new antimicrobial strategies that act more efficiently than traditional antibiotics is becoming a necessity to combat multidrug-resistant pathogens. Here we report the efficacy of laser-light-irradiated 5,10,15,20-tetrakis(m-hydroxyphenyl)porphyrin (mTHPP) loaded onto an ethylcellulose (EC)/chitosan (Chs) nanocomposite in eradicating multi-drug resistant Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. Surface loading of the ethylcelllose/chitosan composite with mTHPP was carried out and the resulting nanocomposite was fully characterized. The results indicate that the prepared nanocomposite incorporates mTHPP inside, and that the composite acquired an overall positive charge. The incorporation of mTHPP into the nanocomposite enhanced the photo- and thermal stability. Different laser wavelengths (458; 476; 488; 515; 635 nm), powers (5–70 mW), and exposure times (15–45 min) were investigated in the antimicrobial photodynamic therapy (aPDT) experiments, with the best inhibition observed using 635 nm with the mTHPP EC/Chs nanocomposite for C. albicans (59 ± 0.21%), P. aeruginosa (71.7 ± 1.72%), and S. aureus (74.2 ± 1.26%) with illumination of only 15 min. Utilization of higher doses (70 mW) for longer periods achieved more eradication of microbial growth

    Production and optimization of novel Sphorolipids from Candida parapsilosis grown on potato peel and frying oil wastes and their adverse effect on Mucorales fungal strains

    No full text
    Abstract Brief introduction Mucormycosis disease, which has recently expanded with the Covid 19 pandemic in many countries, endangers patients' lives, and treatment with common drugs is fraught with unfavorable side effects. Aim and objectives This study deals with the economic production of sophorolipids (SLs) from different eight fungal isolates strains utilizing potato peels waste (PPW) and frying oil waste (FOW). Then investigate their effect against mucormycetes fungi. Results The screening of the isolates for SLs production revealed the highest yield (39 g/100 g substrate) with most efficiency was related to a yeast that have been identified genetically as Candida parapsilosis. Moreover, the characterizations studies of the produced SLs by FTIR, 1H NMR and LC–MS/MS proved the existence of both acidic and lactonic forms, while their surface activity was confirmed by the surface tension (ST) assessment. The SLs production was optimized utilizing Box-Behnken design resulting in the amelioration of yield by 30% (55.3 g/100 g substrate) and ST by 20.8% (38mN/m) with constant level of the critical micelle concentration (CMC) at 125 mg/L. The studies also revealed the high affinity toward soybean oil (E24 = 50%), in addition to maintaining the emulsions stability against broad range of pH (4–10) and temperature (10–100℃). Furthermore, the antifungal activity against Mucor racemosus, Rhizopus microsporus, and Syncephalastrum racemosum proved a high inhibition efficiency of the produced SLs. Conclusion The findings demonstrated the potential application of the SLs produced economically from agricultural waste as an effective and safer alternative for the treatment of infection caused by black fungus

    Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens

    No full text
    A new series of 1,3,4-thiadiazoles was synthesized by the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate (2) with selected derivatives of hydrazonoyl halide by grinding method at room temperature. The chemical structures of the newly synthesized derivatives were resolved from correct spectral and microanalytical data. Moreover, all synthesized compounds were screened for their antimicrobial activities using Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Staphylococcus aureus, and Candida albicans. However, compounds 3 and 5 showed significant antimicrobial activity against all tested microorganisms. The other prepared compounds exhibited either only antimicrobial activity against Gram-positive bacteria like compounds 4 and 6, or only antifungal activity like compound 7. A molecular docking study of the compounds was performed against two important microbial enzymes: tyrosyl-tRNA synthetase (TyrRS) and N-myristoyl transferase (Nmt). The tested compounds showed variety in binding poses and interactions. However, compound 3 showed the best interactions in terms of number of hydrogen bonds, and the lowest affinity binding energy (−8.4 and −9.1 kcal/mol, respectively). From the in vitro and in silico studies, compound 3 is a good candidate for the next steps of the drug development process as an antimicrobial drug

    Optimization of tannase production by Aspergillus glaucus in solid-state fermentation of black tea waste

    No full text
    Abstract Tannases are valuable industrial enzymes used in food, pharmaceutical, cosmetic, leather manufacture and in environmental biotechnology. In this study, 15 fungal isolates were obtained from Egyptian cultivated soil and marine samples. The isolated fungi were qualitatively and quantitatively screened for their abilities to produce tannase. The selected fungal isolate NRC8 giving highest tannase activity was identified by molecular technique (18S rRNA) as Aspergillus glaucus. Among different tannin-containing wastes tested, the black tea waste was the best substrate for tannase production by Aspergillus glaucus in solid-state fermentation (SSF). Optimization of the different process parameters required for maximum enzyme production was carried out to design a suitable SSF process. Maximal tannase production was achieved with moisture content of 75%, an inoculums size of 6 × 108 spore/ml and sodium nitrate 0.2% (pH of 5.0) at 30 °C after 5 days of incubation. Box–Behnken experiment was designed to get a quadratic model for further optimization studies. Four-factor response-surface method with 27 runs was prepared using independent parameters including (moisture content %, initial pH, substrate concentration (g) and sodium nitrate concentration (g) for tannase model. The F- and P-values of the model were 4.30 and 0.002, respectively, which implied that the model is significant. In addition, the lack-of-fit was 1040.37 which indicates the same significance relative to the pure error. A. glaucus tannase was evaluated by the efficiency of conversion of tannic acid to gallic acid. Moreover, production of gallic acid from SSF process of A. glaucus using black tea waste was found to be 38.27 mg/ml. The best bioconversion efficiency was achieved at 40 °C with tannic acid concentration up to 200 g/L. Graphical Abstrac

    Regulation of the antibiotic elution profile from tricalcium phosphate bone cement by addition of bioactive glass

    No full text
    Abstract This work aimed at tailoring of different properties of antibacterial drug delivery Ca-phosphate cements by incorporation of bioactive glass (BG). The cements were prepared from beta-tricalcium phosphate cement (β-TCP) and BG based on 50 SiO2—20 CaO—15 Na2O—7 B2O3—4 P2O5—4 Al2O3 wt% with different percentages of BG [5, 10, 15, and 20% (w/w)]. The composite cements were characterized by XRD, FTIR, and TEM. Moreover, in vitro bioactivity and biodegradation were evaluated in the simulated body fluid (SBF) at 37 °C. In addition, physical properties and mechanical strength were determined. Also, the effect of glass addition on the drug release profile was examined using gentamicin. Finally, the antimicrobial activity was studied against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia bacteria, one unicellular fungal strain (Candida albicans), and one multicellular fungal strain (Mucor racemosus). The results showed that after soaking in SBF, the compression strength values ranged from 14 to 36 MPa, the bulk densities and porosities were within 1.35 to 1.49 g/cm3 and 51.3 to 44.71%, respectively. Furthermore, gentamicin was released in a sustained manner, and BG decreased the released drug amount from ~ 80% (in pure β-TCP) to 47–53% in the composite cements. A drug release profile that is sustained by all samples was achieved. The antimicrobial test showed good activity of gentamicin-conjugated cements against bacteria and fungi used in this study. Additionally, cytotoxicity results proved that all samples were safe on MG-63 cells up to 50 µg/mL with no more than 7–12% dead cells. From the view of the physico-mechanical properties, bioactivity, biodegradation, and drug release rate, 20BG/β-TCP sample was nominated for practical bone grafting material, where it showed appropriate setting time and a relatively high mechanical strength suitable for cancellous bone

    Purification, Characterization and anticancer activity of L-methionine γ-lyase from thermo-tolerant Aspergillus fumigatus

    No full text
    Abstract Purification of L-methionine γ-lyase (MGL) from A. fumigatus was sequentially conducted using heat treatment and gel filtration, resulting in 3.04 of purification fold and 73.9% of enzymatic recovery. The molecular mass of the purified MGL was approximately apparent at 46 KDa based on SDS-PAGE analysis. The enzymatic biochemical properties showed a maximum activity at pH 7 and exhibited plausible stability within pH range 5.0–7.5; meanwhile the highest catalytic activity of MGL was observed at 30–40 °C and the enzymatic stability was noted up to 40 °C. The enzyme molecule was significantly inhibited in the presence of Cu2+, Cd2+, Li2+, Mn2+, Hg2+, sodium azide, iodoacetate, and mercaptoethanol. Moreover, MGL displayed a maximum activity toward the following substrates, L-methionine < DL-methionine < Ethionine < Cysteine. Kinetic studies of MGL for L-methioninase showed catalytic activity at 20.608 mM and 12.34568 µM.min−1. Furthermore, MGL exhibited anticancer activity against cancerous cell lines, where IC50 were 243 ± 4.87 µg/ml (0.486 U/ml), and 726 ± 29.31 µg/ml (1.452 U/ml) against Hep-G2, and HCT116 respectively. In conclusion, A. fumigatus MGL had good catalytic properties along with significantly anticancer activity at low concentration which makes it a probably candidate to apply in the enzymotherapy field
    corecore