7 research outputs found
The role of indoleamine 2,3 dioxygenase in beneficial effects of stem cells in hind limb ischemia reperfusion injury.
Ischemia-Reperfusion (IR) injury of limb remains a significant clinical problem causing secondary complications and restricting clinical recovery, despite rapid restoration of blood flow and successful surgery. In an attempt to further improve post ischemic tissue repair, we investigated the effect of a local administration of bone marrow derived stem cells (BMDSCs) in the presence or absence of immune-regulatory enzyme, IDO, in a murine model. A whole limb warm ischemia-reperfusion model was developed using IDO sufficient (WT) and deficient (KO) mice with C57/BL6 background. Twenty-four hours after injury, 5 × 105 cells (5×105 cells/200 µL of PBS solution) BMDSCs (Sca1 + cells) were injected intramuscularly while the control group received just the vehicle buffer (PBS). Forty-eight to seventy-two hours after limb BMDSC injection, recovery status including the ratio of intrinsic paw function between affected and normal paws, general mobility, and inflammatory responses were measured using video micrometery, flow cytometry, and immunohistochemistry techniques. Additionally, MRI/MRA studies were performed to further study the inflammatory response between groups and to confirm reconstitution of blood flow after ischemia. For the first time, our data, showed that IDO may potentially represent a partial role in triggering the beneficial effects of BMDSCs in faster recovery and protection against structural changes and cellular damage in a hind limb IR injury setting (P = 0.00058)
Cutaneous Wound Healing and the Effects of Cannabidiol
Cutaneous wounds, both acute and chronic, begin with loss of the integrity, and thus barrier function, of the skin. Surgery and trauma produce acute wounds. There are 22 million surgical procedures per year in the United States alone, based on data from the American College of Surgeons, resulting in a prevalence of 6.67%. Acute traumatic wounds requiring repair total 8 million per year, 2.42% or 24.2 per 1000. The cost of wound care is increasing; it approached USD 100 billion for just Medicare in 2018. This burden for wound care will continue to rise with population aging, the increase in metabolic syndrome, and more elective surgeries. To heal a wound, an orchestrated, evolutionarily conserved, and complex series of events involving cellular and molecular agents at the local and systemic levels are necessary. The principal factors of this important function include elements from the neurological, cardiovascular, immune, nutritional, and endocrine systems. The objectives of this review are to provide clinicians engaged in wound care and basic science researchers interested in wound healing with an updated synopsis from recent publications. We also present data from our primary investigations, testing the hypothesis that cannabidiol can alter cutaneous wound healing and documenting their effects in wild type (C57/BL6) and db/db mice (Type 2 Diabetes Mellitus, T2DM). The focus is on the potential roles of the endocannabinoid system, cannabidiol, and the important immune-regulatory wound cytokine IL-33, a member of the IL-1 family, and connective tissue growth factor, CTGF, due to their roles in both normal and abnormal wound healing. We found an initial delay in the rate of wound closure in B6 mice with CBD, but this difference disappeared with time. CBD decreased IL-33 + cells in B6 by 70% while nearly increasing CTGF + cells in db/db mice by two folds from 18.6% to 38.8% (p < 0.05) using a dorsal wound model. We review the current literature on normal and abnormal wound healing, and document effects of CBD in B6 and db/db dorsal cutaneous wounds. CBD may have some beneficial effects in diabetic wounds. We applied 6–mm circular punch to create standard size full-thickness dorsal wounds in B6 and db/db mice. The experimental group received CBD while the control group got only vehicle. The outcome measures were rate of wound closure, wound cells expressing IL-33 and CTGF, and ILC profiles. In B6, the initial rate of wound closure was slower but there was no delay in the time to final closure, and cells expressing IL-33 was significantly reduced. CTGF + cells were higher in db/bd wounds treated with CBD. These data support the potential use of CBD to improve diabetic cutaneous wound healing
SCs treatment reduces cell death in an IDO dependent manner.
<p>Flow cytometry analysis showed (5a) that stem Cells reduce cell death (apoptosis/necrosis) with their most profound effects in the presence of IDO. Further, flow cytometric analysis demonstrated that a majority of reduction in cell death occurred among parenchymal cells (CD45 negative) and not infiltrated leukocytes (CD45+), indicating the beneficial impact of SCs in reducing cell death and necrotic responses, leading to less inflammation, more protection and faster recovery. Statistical analysis was performed using Kruskal-Wallis test with Dunn’s multiple-comparison post- hoc test. * = p<0.05, ** = p<0.01, *** = p<0.001.</p
Treatment Effect on Toe Spread Ratio Averages (48–72 hours after treatment).
<p>The outcome of stem cell (SC) therapy indicates that IDO may improve recovery. IDO-KO mice treated with SC demonstrated an accelerated recovery compared with IDO-KO treated with PBS (p-value <0.05). However, the WT mice treated with SC showed the greatest recovery of intrinsic paw function when expressed as a ratio comparing it to the non-injured paw (p-value = 0.027). Functional recovery from ischemia-reperfusion (IR) injury in the different treatment groups was measured, using a modified version of walking track analysis. For each subject, toe spread was measured in the IR limb (Ti) and control contralateral limb (Tc). The ratio of the toe spread in the injured limb (Ti) to the control limb (Tc) was then calculated by Ti/Tc. A ratio of 1 indicates 100% recovery or equal width and thus normal intrinsic function. When comparing the WT group treated with stem cells to those treated with PBS, a 45% increase in recovery was seen demonstrating the efficacy of stem cell therapy alone in the presence of an environment where IDO expression is present.</p
T2 weighted images.
<p><b>a)</b> Representative T2 weighted imaging cuts where the enhancement of the soft tissue can be observed within the injured legs and compared to the non-injured legs and, <b>b)</b> The average ratio of enhancement measured between the injured leg over the non-injured leg are shown in this representative graph for each of the 4 groups.</p
Regulatory effects of SCs may be partially associated with IDO presence in tissue microenvironment.
<p>Dot Plots are representatives of flow cytometric analysis of live single cell preparations from murine hind limb tissues with IRI showed that in the presence of IDO, injection of BMDSCs decreased CD3+ cells (T cells), IL-17 and IL-23 expression (IL-23 is based on gating of IL-17+ cells). Further, applying BMDCs could increase both CD3+ FOXP3+ cells (Tregs, gated on CD3+ cells) and IL-10 expression in an IDO sufficient microenvironment. Bargraphs on the right side of each group are reflecting the accumulative analysis of five animal per experimental group. Statistical analysis was performed using Kruskal-Wallis test with Dunn’s multiple-comparison post- hoc test. * = p<0.05, ** = p<0.01, *** = p<0.001.</p