6 research outputs found

    Acinetobacter baumannii complex, national laboratory-based surveillance in South Africa, 2017 to 2019

    Get PDF
    OBJECTIVE : We aimed to provide an analysis of A. baumannii complex (ABC) isolated from blood cultures in South Africa. MATERIALS AND METHODS : ABC surveillance was conducted from 1 April 2017 to 30 September 2019 at 19 hospital sites from blood cultures of any age and sex. Organism identification was performed using the MALDI-TOF MS and antimicrobial susceptibility testing (AST), MicroScan Walkaway System. We confirmed colistin resistance with Sensititre, FRCOL panel, and selected for whole-genome sequencing. RESULTS : During the study period, we identified 4822 cases of ABC, of which 2152 cases were from 19 enhanced surveillance sites were reported during the enhanced surveillance period (1 August 2018 to 30 September 2019). Males accounted for 54% (2611/4822). Of the cases with known age, 41% (1968/4822) were infants (< 1-year-old). Seventy-eight percent (1688/ 2152) of cases had a known hospital outcome, of which 36% (602/1688) died. HIV status was known for 69% (1168/1688) of cases, and 14% (238/1688) were positive. Eighty-two percent (1389/1688) received antimicrobial treatment in admission. Three percent (35/ 1389) of cases received single colistin. Four percent (75/2033) were resistant to colistin. At least 75% of the isolates (1530/2033) can be classified as extensively drug-resistant (XDR), with resistance to most antibiotics except for colistin. The majority, 83% (20/24), of the colistin-resistant isolates were of the sequence type (ST) 1. Resistance genes, both plasmidand chromosomal- mediated were not observed. Although all isolates had, nine efflux pump genes related to antimicrobial resistance. CONCLUSION : Our surveillance data contributed to a better understanding of the natural course of A. baumannii disease, the patient characteristics among infants, and the level of resistance. At least two-thirds of the isolates were extensively drug-resistant, and four percent of isolates were resistant to colistin.http://www.plosone.orgdm2022Medical Microbiolog

    A Retrospective Analysis of Culture-Confirmed Enterococci Bloodstream Infections in South Africa, 2016–2020: A Cross-Sectional Study

    No full text
    (1) Background: The emergence of multidrug resistance enterococci is a major public health concern. This study aimed to determine the prevalence and antimicrobial resistance of enterococci isolated from blood cultures over a five-year period (2016–2020) at public hospitals in South Africa. (2): Methods: A retrospective analysis of clinical enterococci isolated from bloodstream infection samples at the South African public hospitals was conducted. The ESKAPE dataset from January 2016 to December 2020 was obtained from the central data warehouse (CDW) at the National Health Laboratory Service (NHLS). (3): Results: Following de-duplication, a total of 130,352/306,592 organisms isolated from blood cultures were identified as ESKAPE pathogens. In this study, K. pneumoniae (25%; 33,082/130,352), was the most frequently isolated pathogen from blood cultures, followed by S. aureus (23%; 29,922/130,352) and enterococci (16%; 21,339/130,352). Of the enterococci cases, about 43% (9132/21,339) of cases were from the infants aged (E. faecium and E. faecalis blood culture isolates remained highly susceptible (>97%) to these antibiotics. (4): Conclusions: The current study revealed a significant increase of E. faecalis and E. faecium blood culture isolates as compared to the previous national ESKAPE data. Low vancomycin resistance was observed. Continuous monitoring of antimicrobial resistant Enterococcus species is warranted in South Africa

    Unconventional SCCmec types and low prevalence of the Panton-Valentine Leukocidin exotoxin in South African blood culture Staphylococcus aureus surveillance isolates, 2013-2016.

    No full text
    Staphylococcus aureus is a healthcare-associated pathogen that can harbour multiple antimicrobial resistance determinants and express multiple virulence factors e.g. Panton-Valentine Leukocidin (PVL). Unknown staphylococcal cassette chromosome mec (SCCmec) typing patterns were previously observed among 11% (n = 52) of methicillin-resistant S. aureus (MRSA) isolates; we further investigated these as well as the proportion of PVL, encoded by lukS/F-PV, in 761 S. aureus isolates from patients with a diagnosis of pneumonia/lower respiratory tract, skin/soft tissue, bone and joint infection. S. aureus isolates from blood culture were identified and antimicrobial susceptibility testing was performed using automated systems. Conventional PCR assays were used to identify the ccr and mec gene complexes in mecA-positive isolates with an unknown SCCmec type and screen for lukS/F-PV. Epidemiological data was used to classify isolates as healthcare- or community-associated infections. Antimicrobial susceptibility profiles according to SCCmec type and PVL were reported. Of the unknown SCCmec types, isolates were interpreted as type I-like (86%, 38/44), type II-like (9%, 4/44) and type III-like (5%, 2/44). Eight isolates did not produce definitive results. Of all MRSA isolates, majority were multidrug-resistant as indicated by their non-susceptibility to most antimicrobial agents; 92% were healthcare-associated. PVL was seen in 14% of the isolates (MRSA: 25%, MSSA: 75%); 56% were classified as healthcare-associated infection. The SCCmec typing method did not definitively classify all unknown isolates into clearly defined types. It showed that majority of these isolates were not the conventional types; untypeable elements appeared to be composite SCCmec elements, consisting of multiple ccr gene complexes. Majority of the MRSA isolates were non-susceptible to most antibiotics indicating that multiple resistance genes are present in our population. Furthermore, the proportion of PVL was low and more prevalent in MSSA

    Outbreak of NDM-1– and OXA-181–Producing Klebsiella pneumoniae Bloodstream Infections in a Neonatal Unit, South Africa

    No full text
    After an increase in carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections and associated deaths in the neonatal unit of a South Africa hospital, we conducted an outbreak investigation during October 2019–February 2020 and cross-sectional follow-up during March 2020–May 2021. We used genomic and epidemiologic data to reconstruct transmission networks of outbreak-related clones. We documented 31 cases of culture-confirmed CRKP infection and 14 deaths. Two outbreak-related clones (blaNDM-1 sequence type [ST] 152 [n = 16] and blaOXA-181 ST307 [n = 6]) cocirculated. The major clone blaNDM-1 ST152 accounted for 9/14 (64%) deaths. Transmission network analysis identified possible index cases of blaOXA-181 ST307 in October 2019 and blaNDM-1 ST152 in November 2019. During the follow-up period, 11 new cases of CRKP infection were diagnosed; we did not perform genomic analysis. Sustained infection prevention and control measures, adequate staffing, adhering to bed occupancy limits, and antimicrobial stewardship are key interventions to control such outbreaks
    corecore