75 research outputs found

    Modelling receding contact lines on superhydrophobic surfaces

    Full text link
    We use mesoscale simulations to study the depinning of a receding contact line on a superhydrophobic surface patterned by a regular array of posts. In order that the simulations are feasible, we introduce a novel geometry where a column of liquid dewets a capillary bounded by a superhydrophobic plane which faces a smooth hydrophilic wall of variable contact angle. We present results for the dependence of the depinning angle on the shape and spacing of the posts, and discuss the form of the meniscus at depinning. We find, in agreement with [17], that the local post concentration is a primary factor in controlling the depinning angle, and show that the numerical results agree well with recent experiments. We also present two examples of metastable pinned configurations where the posts are partially wet.Comment: Revised version accepted for publication in Langmui

    Capillary filling in microchannels patterned by posts

    Full text link
    We investigate the capillary filling of three dimensional micro-channels with surfaces patterned by posts of square cross section. We show that pinning on the edges of the posts suppresses, and can halt, capillary filling. We stress the importance of the channel walls in controlling whether filling can occur. In particular for channels higher than the distance between adjacent posts, filling occurs for contact angles less than a threshold angle \sim 55 deg., independent of the height of the channel.Comment: To appear in Phys. Rev.

    Direct measurement of DNA-mediated adhesion between lipid bilayers

    Full text link
    Multivalent interactions between deformable mesoscopic units are ubiquitous in biology, where membrane macromolecules mediate the interactions between neighbouring living cells and between cells and solid substrates. Lately, analogous artificial materials have been synthesised by functionalising the outer surface of compliant Brownian units, for example emulsion droplets and lipid vesicles, with selective linkers, in particular short DNA sequences. This development extended the range of applicability of DNA as a selective glue, originally applied to solid nano and colloidal particles. On very deformable lipid vesicles, the coupling between statistical effects of multivalent interactions and mechanical deformation of the membranes gives rise to complex emergent behaviours, as we recently contributed to demonstrate [Parolini et al., Nature Communications, 2015, 6, 5948]. Several aspects of the complex phenomenology observed in these systems still lack a quantitative experimental characterisation and fundamental understanding. Here we focus on the DNA-mediated multivalent interactions of a single liposome adhering to a flat supported bilayer. This simplified geometry enables the estimate of the membrane tension induced by the DNA-mediated adhesive forces acting on the liposome. Our experimental investigation is completed by morphological measurements and the characterisation of the DNA-melting transition, probed by in-situ F\"{o}rster Resonant Energy Transfer spectroscopy. Experimental results are compared with the predictions of an analytical theory that couples the deformation of the vesicle to a full description of the statistical mechanics of mobile linkers. With at most one fitting parameter, our theory is capable of semi-quantitatively matching experimental data, confirming the quality of the underlying assumptions.Comment: 16 pages, 7 figure

    Antimicrobial resistance, an update from the ward: Increased incidence of new potential pathogens and site of infection-specific antibacterial resistances

    Get PDF
    In order to monitor the spread of antimicrobial resistance, the European Union requires hospitals to be equipped with infection control centers. With this aim, we analyzed 1583 bacterial strains isolated from samples of different origin from patients with community-onset and nosocomial infections in a public tertiary University Hospital on the outskirts of Turin, Italy. Statistical analyses of the isolates (source, type) and their antimicrobial resistance (AMR) were performed. The survey revealed infections associated with bacterial species considered as not-commensal and not-pathogenic, hence potentially emerging as new threats for human health. Conversely to the general observation of nosocomial strains being more resistant to antibiotics compared to community-acquired strains, nosocomial strains isolated in this study were more resistant only to 1/42 tested antibiotics (tetracycline). By adopting an ecological approach, we observed that blood infections are associated with the broadest range of species compared to infections affecting other areas and we obtained clear indications on the antibiotics that should be preferred in the treatment of infections at specific body sites. Future investigations carried out on a larger geographical scale will clarify whether these indications are limited to the geographical region investigated over this study, or whether the same trends are visible at national or international level

    Pseudo-dipeptide bearing α,α-difluoromethyl ketone moiety as electrophilic warhead with activity against coronaviruses

    Get PDF
    The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose

    Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment

    Full text link
    The prediction of the equation of state and the phase behavior of simple fluids (noble gases, carbon dioxide, benzene, methane, short alkane chains) and their mixtures by Monte Carlo computer simulation and analytic approximations based on thermodynamic perturbation theory is discussed. Molecules are described by coarse grained (CG) models, where either the whole molecule (carbon dioxide, benzene, methane) or a group of a few successive CH_2 groups (in the case of alkanes) are lumped into an effective point particle. Interactions among these point particles are fitted by Lennard-Jones (LJ) potentials such that the vapor-liquid critical point of the fluid is reproduced in agreement with experiment; in the case of quadrupolar molecules a quadrupole-quadrupole interaction is included. These models are shown to provide a satisfactory description of the liquid-vapour phase diagram of these pure fluids. Investigations of mixtures, using the Lorentz-Berthelot (LB) combining rule, also produce satisfactory results if compared with experiment, while in some previous attempts (in which polar solvents were modelled without explicitly taking into account quadrupolar interaction), strong violations of the LB rules were required. For this reason, the present investigation is a step towards predictive modelling of polar mixtures at low computational cost. These very simple coarse-grained models of small molecules developed here should be useful e.g. for simulations of polymer solutions with such molecules as solvent.Comment: J. Chem. Phys., accepte

    Vapor phase mediated cellular uptake of sub 5 nm nanoparticles

    Get PDF
    Nanoparticles became an important and wide-used tool for cell imaging because of their unique optical properties. Although the potential of nanoparticles (NPs) in biology is promising, a number of questions concerning the safety of nanomaterials and the risk/benefit ratio of their usage are open. Here, we have shown that nanoparticles produced from silicon carbide (NPs) dispersed in colloidal suspensions are able to penetrate into surrounding air environment during the natural evaporation of the colloids and label biological cells via vapor phase. Natural gradual size-tuning of NPs in dependence to the distance from the NP liquid source allows progressive shift of the fluorescence color of labeled cells in the blue region according to the increase of the distance from the NP suspension. This effect may be used for the soft vapor labeling of biological cells with the possibility of controlling the color of fluorescence. However, scientists dealing with the colloidal NPs have to seriously consider such a NP's natural transfer in order to protect their own health as well as to avoid any contamination of the control samples

    Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages

    Full text link
    We propose a new strategy to improve the self-assembly properties of DNA-functionalised colloids. The problem that we address is that DNA-functionalised colloids typically crystallize in a narrow temperature window, if at all. The underlying reason is the extreme sensitivity of DNA-mediated interactions to temperature or other physical control parameters. We propose to widen the window for colloidal crystallization by exploiting the competition between DNA linkages with different nucleotide sequences, which results in a temperature-dependent switching of the dominant bond type. Following such a strategy, we can decrease the temperature dependence of DNA-mediated self assembly to make systems that can crystallize in a wider temperature window than is possible with existing systems of DNA functionalised colloids. We report Monte Carlo simulations that show that the proposed strategy can indeed work in practice for real systems and specific, designable DNA sequences. Depending on the length ratio of the different DNA constructs, we find that the bond switching is either energetically driven (equal length or `symmetric' DNA) or controlled by a combinatorial entropy gain (`asymmetric' DNA), which results from the large number of possible binding partners for each DNA strand. We provide specific suggestions for the DNA sequences with which these effects can be achieved experimentally
    corecore