32 research outputs found

    Catalase epitopes vaccine design for Helicobacter pylori: A bioinformatics approach

    Get PDF
    Bioinformatics tools are helpful for epitopes prediction directly from the genomes of pathogens in order to design a vaccine. Epitopes are sub-sequences of proteins (8 to 10 mer peptides) which bind to MHC to interact with the T cell receptors and stimulate immune responses. Finding a suitable vaccine against Helicobacter pylori is necessary, because of high prevalence of the infection (25 to 90%). Moreover, this bacteria has been classified as a grade I carcinogen by WHO since 1994. Catalase, an important enzyme in the virulence of H. pylori, could be a suitable candidate for vaccine design because it is highly conserved, which is important for the survival of H. pylori; it is expressed in high level and it is exposed on the surface of the bacteria. In this study, we designed epitope-based vaccine for catalase specific regions of H. pylori by means of immunobioinformatic tools. H. pylori (26695) catalase has been compared with human catalase in order to select specific regions. Afterwards, epitopes of catalase were determined by propred software. Among predicted epitopes, three epitopes were selected including, MVNKDVKQTT, VLLQSTWFL and FHPFDVTKI. Three candidates out of 51catalase antigen epitopes had the highest score for reactivating with MHC II MHC in propred software. The candidate epitopes for vaccine design should be rather a composition of considering epitopes: MVNKDVKQTTKKVLLQSTWFLKKFHPFDVTKI. In this manner, 39 of 51 alleles of MHC class ІІ were involved and stimulated T-cell responses. We believe prediction of catalase epitopes by the immunoinformatics tools would be valuable for developing new immuoprophylatic strategy against H. pylori infection.Key words: Helicobacter pylori, catalase, epitopes

    A new multiplex polymerase chain reaction assay for the identification a panel of bacteria involved in bacteremia

    No full text
    Background: Throughout the world, bloodstream infections (BSI s ) are associated with high rates of morbidity and mortality. Rapid pathogens identification is central significance for the outcome of the patient than culture techniques for microbial identification. To develop an end point multiplex PCR to identify a group of bacteria including Enterococcus spp., Pseudomons aeruginosa, Staphylococcus spp., Acinetobacter baumannii, 16S rDNA, and Drosophila Melanogaster were used as internal control (IC). Materials and Methods: Design of primers was done using Mega4, Allel ID6, Oligo6 and Oligo analyzer softwares. Genetic targets for primer designing and identification of genus Enterococcus spp., Staphylococcus spp., and species of Acinetobacter baumannii, Pseudomons aeruginosa, included the rpoB, rpoB and gyrA, sss respectively. Then PCR and multiplex PCR were performed Results: The intended specificity was obtained for the bacteria, which used in this study and there wasn′t seen any unspecific amplification by the multiplex PCR. The test showed a sensitivity ranging from 1 to 100 target copies per reaction depending on the bacterial species. Conclusions: The presented multiplex PCR offers a rapid and accurate molecular diagnostic tool for simultaneous detection of some pathogenic microorganisms. The IC exists in the multiplex PCR accompanied by other primers in the system, can serve as a simple, cost- effective internal control for the multiplex PCR assay
    corecore