12 research outputs found

    Assessment of cd93 stem cell growth and survival on three-dimensional biodegradable pcl-gelatin scaffold

    Get PDF
    Background and purpose: Application of three-dimensional scaffolds with the ability to simulate a three-dimensional in vivo environment has opened new perspective on targeted differentiation and therapeutic use of stem cells. In this study we examined the compatibility of CD93 stem cells with biodegradable pcl- gelatin scaffold. Materials and methods: In this experimental study, three-dimensional scaffolds made of PCL -gelatin using electrospining synthesis and its molecular structure was tested by SEM electron microscopy. The scaffold surface was disinfected by UV ray. The hematopoietic CD93stem cells of those isolated previously were divided into two groups including normal cultured (plate) and culture on scaffolds (scaffold + cell). The survival and growth of the cells were measured through MTT assay and electron microscopy at 7, 14, and 28 days after culturing. Results: Electron microscopic analysis on the seventh day showed appropriate adhesion of CD93 cells on scaffold fibers and secretion of extracellular matrix. Survival rate of the cells at 7, 14, and 28 days after culturing were not significantly different between the two groups. But at the same days significant differences were observed in the Scaffold + Cell group (P< 0.05). Conclusion: This study suggests that PCL nanofiber scaffolds has high compatibility with CD93 stem cells and proximity to this scaffold lead to increased survival and growth of the cells. Further studies on the treatment of tissue damage and scarring by CD93 stem cells using this scaffold can be effective in increasing treatment efficiency. © 2016, Mazandaran University of Medical Sciences. All rights reserved

    Hereditary ataxia with a novel mutation in the Senataxin gene: A case report

    Get PDF
    Hereditary ataxias (HA) are a group of inherited neurological disorders caused by changes in genes. At least 115 different mutations in the senataxin (SETX) gene causing ataxia have been identified. There are no reports of any SETX gene mutation among the Iranian population. Here we report on two cases with homozygous and heterozygous mutations in which one patient was affected by HA with oculomotor apraxia type 2, and the other was a carrier of the disorder. In 2016, the affected patient was referred to the Biogene Medical and Genetic Laboratory (Tehran, Iran) suffering from imbalance and tremor of both head and body. The coding regions of 18 genes, including the SETX gene, were screened. The target regions were captured using the NimbleGen chip followed by next-generation sequencing (NGS) technology on the Illumina Hiseq2500 platform. NGS, a DNA sequencing technology, has greatly increased the ability to identify new causes of ataxia; a useful tool for the prevention of primary manifestations and treatment of affected patients. In the present study, a novel mutation in the SETX gene has been identified. © 2019, Shiraz University of Medical Sciences. All rights reserved

    An Evaluation of the Effect of Polycaprolactone/Gelatin (Pcl/Gt) Nanofiber Scaffold on the Therapeutic Function of Hematopoietic Stem Cells

    Get PDF
    BACKGROUND AND OBJECTIVE: Hematopoietic stem cells are one of the new therapeutic options for treating skin ulcers. Recently, a new perspective has been developed to better utilize stem cells using nanofiber scaffolds. The present study was conducted to investigate the effect of polycaprolactone/gelatin (PCL/GT) nanofiber scaffold on the therapeutic function of hematopoietic stem cells. METHODS: In this experimental study, 15 male BALB / c mice were divided into three groups of five, including the control group, the group receiving stem cells in the wound site (cell group) and the group receiving cell + PCL nanofiber scaffold. PCL/GT nanofiber scaffold was prepared by electrotherapy. After hematoxylin and eosin staining, the parameters of epidermal repair and hair follicle formation in the wound site were evaluated by fluorescence microscope and Image J and SPSS programs. FINDINGS: On day 28 after transplantation, the highest and lowest epidermal thicknesses were observed in the cell + scaffold group and control group, which were 10.5±0.3 and 27.3±0.9 μm, respectively, which was significant (p<0.05). Moreover, the highest and lowest number of hair follicles were observed in the cell + scaffold group and control group, respectively; 5.2±0.2 and 4.2±0.3. The difference between the two groups was significant (p<0.01) CONCLUSION: Polycaprolactone / gelatin (PCL/GT) nanofiber scaffold significantly increases the therapeutic function of hematopoietic stem cells in the wound site

    Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs

    Get PDF
    Cell-based immunotherapies have been selected for the front-line cancer treatment approaches. Among them, CAR-T cells have shown extraordinary effects in hematologic diseases including chemotherapy-resistant acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin lymphoma (NHL). In this approach, autologous T cells isolated from the patient's body genetically engineered to express a tumor specific synthetic receptor against a tumor antigen, then these cells expanded ex vivo and re-infusion back to the patient body. Recently, significant clinical response and high rates of complete remission of CAR T cell therapy in B-cell malignancies led to the approval of Kymriah and Yescarta (CD19-directed CAR-T cells) were by FDA for treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Despite promising therapeutic outcomes, CAR T cells also can elicit the immune-pathologic effects, such as Cytokine Release Syndrome (CRS), Tumor Lysis Syndrome (TLS), and on-target off-tumor toxicity, that hampered its application. Ineffective control of these highly potent synthetic cells causes discussed potentially life-threatening toxicities, so researchers have developed several mechanisms to remote control CAR T cells. In this paper, we briefly review the introduced toxicities of CAR-T cells, then describe currently existing control approaches and review their procedure, pros, and cons. © 2021 The Author

    Mutation characterization and heterodimer analysis of patients with leukocyte adhesion deficiency: Including one novel mutation

    Get PDF
    Abstract Background and aim Leukocyte adhesion deficiency type 1 (LAD-I) is a rare, autosomal recessive disorder of neutrophil migration, characterized by severe, recurrent bacterial infections, inadequate pus formation and impaired wound healing. The ITGB2 gene encodes the β2 integrin subunit (CD18) of the leukocyte adhesion cell molecules, and mutations in this gene cause LAD-I. The aim of the current study was to investigate the mutations in patients diagnosed with LAD-I and functional studies of the impact of two previously reported and a novel mutation on the expression of the CD18/CD11a heterodimer. Materials and methods Blood samples were taken from three patients who had signed the consent form. Genomic DNA was extracted and ITGB2 exons and flanking intronic regions were amplified by polymerase chain reaction. Mutation screening was performed after Sanger sequencing of PCR products. For functional studies, COS-7 cells were co-transfected with an expression vector containing cDNA encoding mutant CD18 proteins and normal CD11a. Flow cytometry analysis of CD18/CD11a expression was assessed by dimer-specific IB4 monoclonal antibody. Results Two previously reported mutations and one novel mutation,p. Cys562Tyr, were found. All mutations reduced CD18/CD11 heterodimer expression. Conclusion Our strategy recognized the p.Cys562Tyr mutation as a pathogenic alteration that does not support CD18 heterodimer formation. Therefore, it can be put into a panel of carrier and prenatal diagnosis programs. Keywords Leukocyte adhesion deficiency type I Immunodeficiency Mutation Genetic testing CD1

    Thwarting PTEN Expression by siRNA Augments HL-60 Cell Differentiation to Neutrophil-Like Cells by DMSO and ATRA

    No full text
    Abnormal cell differentiation, in particular suppression of terminal cell differentiation, exists in all tumors. Therapeutic interventions to restore terminal differentiation ("differentiation therapy") are a very attractive way to treat cancer, especially leukemia. A variety of chemicals stimulates differentiation of leukemic cells, such as dimethyl sulfoxide (DMSO) and all-trans retinoic acid (ATRA). Tumor suppressor genes have a vital role in the gateway to terminal cell differentiation. In this study, we inhibited PTEN tumor suppressor gene expression by siRNA to investigate the effect of potentiating cell survival and inhibiting apoptosis on HL-60 cell differentiation by DMSO and ATRA. Our results show that PTEN siRNA increases HL-60 cell differentiation in the presence of DMSO and ATRA. At the same time, the presence of siRNA hampers accumulation of apoptotic cells during incubation. Our study suggests that manipulation of PTEN could hold promise for enhancing efficacy of differentiation therapy of acute myelogenous leukemia. © 2016, Mary Ann Liebert, Inc

    Role of PTEN in neutrophil extracellular trap formation

    No full text
    NETosis has been associated with a particular mode of cell death although it is still controversial as to what extent autophagy is involved in NETosis. Class I/AKT/mTOR pathway is a key regulator of autophagy. PTEN tumor suppressor gene encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase in class the I/AKT/mTOR pathway. In this study, we investigated the effects of PTEN down-regulation as well as overexpression on NETosis. Our results show that 35 of HL-60 differentiated neutrophil-like cells generated NETs by PMA. The portion of the population that produced NETs in PTEN knockdown HL-60 differentiated neutrophils was 9 and in PTEN overexpressed HL-60 differentiated neutrophils, it was 56. Our results show that increasing PTEN expression increases NETs formation in neutrophils, and its suppression reduces NETs. © 2015 Published by Elsevier Ltd
    corecore