3 research outputs found

    De robot als mens 2.0

    Get PDF

    Noise Considerations for Tomographic Reconstruction of Single-Projection Digital Holographic Interferometry-Based Radiation Dosimetry

    Get PDF
    Optical Calorimetry (OC) is a 2D Digital Holographic Interferometry (DHI)-based measurement technique with potential applications for the 3D dosimetry of ultra-high dose rate (FLASH) radiation therapy beams through tomographic reconstruction. This application requires accurate measurements of DHI signals in environments with low signal-to-noise ratios (SNRs) in order to accurately measure absorbed energy to a medium per unit mass (Dose). However, tomographic reconstruction accuracy is sensitive to noise in the measurements. In this study, a virtual model of an OC dosimeter was used to characterize and model major sources of noise within a DHI setup, allowing for the modelled noise sources to be selectively reduced. The tomographic reconstruction of the 3D dose distribution was achieved using the inverse Abel transform. Reducing the noise contribution from atmospheric turbulence and mechanical vibration by one half improved the central axis reconstruction error from 6.5% to 1.3% and 1.1%, respectively, and the mean dose difference from 2.9% to 0.4% and 0.3%, respectively. This indicates the potential of the tomographic DHI-based 3D OC dosimeter to reconstruct accurate 3D dose distributions from a single projection if the specified sources of noise can be reduced to acceptable levels. The used methodology is applicable to any application of tomographic DHI where reconstruction quality is highly sensitive to noise

    Optical-Radiation-Calorimeter Refinement by Virtual-Sensitivity Analysis

    Get PDF
    Digital holographic interferometry (DHI) radiation dosimetry has been proposed as an experimental metrology technique for measuring absorbed radiation doses to water with high spatial resolution via noninvasive optical calorimetry. The process involves digitally recording consecutive interference patterns resulting from variations in the refractive index as a function of the radiation-absorbed dose. Experiments conducted on prototype optical systems revealed the approach to be feasible but strongly dependent on environmental-influence quantities and setup configuration. A virtual dosimeter reflecting the prototype was created in a commercial optical modelling package. A number of virtual phantoms were developed to characterize the performance of the dosimeter under ideal conditions and with simulated disruptions in environmental-influence quantities, such as atmospheric and temperature perturbations as well as mechanical vibrations. Investigations into the error response revealed that slow drifts in atmospheric parameters and heat expansion caused the measured dose to vary between measurements, while atmospheric fluctuations and vibration contributed to system noise, significantly lowering the spatial resolution of the detector system. The impact of these effects was found to be largely mitigated with equalisation of the dosimeter’s reference and object path lengths, and by miniaturising the detector. Equalising path lengths resulted in a reduction of 97.5% and 96.9% in dosimetric error introduced by heat expansion and atmospheric drift, respectively, while miniaturisation of the dosimeter was found to reduce its sensitivity to vibrations and atmospheric turbulence by up to 41.7% and 54.5%, respectively. This work represents a novel approach to optical-detector refinement in which metrics from medical imaging were adapted into software and applied to a a virtual-detector system. This methodology was found to be well-suited for the optimization of a digital holographic interferometer
    corecore