1,642 research outputs found
Large Scale Structures a Gradient Lines: the case of the Trkal Flow
A specific asymptotic expansion at large Reynolds numbers (R)for the long
wavelength perturbation of a non stationary anisotropic helical solution of the
force less Navier-Stokes equations (Trkal solutions) is effectively constructed
of the Beltrami type terms through multi scaling analysis. The asymptotic
procedure is proved to be valid for one specific value of the scaling
parameter,namely for the square root of the Reynolds number (R).As a result
large scale structures arise as gradient lines of the energy determined by the
initial conditions for two anisotropic Beltrami flows of the same helicity.The
same intitial conditions determine the boundaries of the vortex-velocity tubes,
containing both streamlines and vortex linesComment: 27 pages, 2 figure
Gauge vortex dynamics at finite mass of bosonic fields
The simple derivation of the string equation of motion adopted in the
nonrelativistic case is presented, paying the special attention to the effects
of finite masses of bosonic fields of an Abelian Higgs model. The role of the
finite mass effects in the evaluation of various topological characteristics of
the closed strings is discussed. The rate of the dissipationless helicity
change is calculated. It is demonstrated how the conservation of the sum of the
twisting and writhing numbers of the string is recovered despite the changing
helicity.Comment: considerably revised to include errata to journal versio
Identifying Deficiencies of Standard Accretion Disk Theory: Lessons from a Mean-Field Approach
Turbulent viscosity is frequently used in accretion disk theory to replace
the microphysical viscosity in order to accomodate the observational need for
in- stabilities in disks that lead to enhanced transport. However, simply
replacing the microphysical transport coefficient by a single turbulent
transport coeffi- cient hides the fact that the procedure should formally arise
as part of a closure in which the hydrodynamic or magnetohydrodynamic equations
are averaged, and correlations of turbulent fluctuations are replaced by
transport coefficients. Here we show how a mean field approach leads quite
naturally two transport coefficients, not one, that govern mass and angular
momentum transport. In particular, we highlight that the conventional approach
suffers from a seemingly inconsistent neglect of turbulent diffusion in the
surface density equation. We constrain these new transport coefficients for
specific cases of inward, outward, and zero net mass transport. In addition, we
find that one of the new transport terms can lead to oscillations in the mean
surface density which then requires a constant or small inverse Rossby number
for disks to maintain a monotonic power-law surface density.Comment: 11 page
``Smoke Rings'' in Ferromagnets
It is shown that bulk ferromagnets support propagating non-linear modes that
are analogous to the vortex rings, or ``smoke rings'', of fluid dynamics. These
are circular loops of {\it magnetic} vorticity which travel at constant
velocity parallel to their axis of symmetry. The topological structure of the
continuum theory has important consequences for the properties of these
magnetic vortex rings. One finds that there exists a sequence of magnetic
vortex rings that are distinguished by a topological invariant (the Hopf
invariant). We present analytical and numerical results for the energies,
velocities and structures of propagating magnetic vortex rings in ferromagnetic
materials.Comment: 4 pages, 3 eps-figures, revtex with epsf.tex and multicol.sty. To
appear in Physical Review Letters. (Postscript problem fixed.
Kinematic alpha effect in isotropic turbulence simulations
Using numerical simulations at moderate magnetic Reynolds numbers up to 220
it is shown that in the kinematic regime, isotropic helical turbulence leads to
an alpha effect and a turbulent diffusivity whose values are independent of the
magnetic Reynolds number, \Rm, provided \Rm exceeds unity. These turbulent
coefficients are also consistent with expectations from the first order
smoothing approximation. For small values of \Rm, alpha and turbulent
diffusivity are proportional to \Rm. Over finite time intervals meaningful
values of alpha and turbulent diffusivity can be obtained even when there is
small-scale dynamo action that produces strong magnetic fluctuations. This
suggests that small-scale dynamo-generated fields do not make a correlated
contribution to the mean electromotive force.Comment: Accepted for publication in MNRAS Letter
Temperature perturbation model of the opto-galvanic effect in CO2-laser discharges
A detailed discharge model of the opto-galvanic effect in molecular laser gas mixtures is developed based on the temperature perturbation or discharge cooling mechanism of Smith and Brooks (1979). Excellent agreement between the model and experimental results in CO2 laser gas mixtures is obtained. The model should be applicable to other molecular systems where the OGE is being used for laser stabilisation and as a spectroscopic tool
Interference phenomena in scalar transport induced by a noise finite correlation time
The role played on the scalar transport by a finite, not small, correlation
time, , for the noise velocity is investigated, both analytically and
numerically. For small 's a mechanism leading to enhancement of
transport has recently been identified and shown to be dominating for any type
of flow. For finite non-vanishing 's we recognize the existence of a
further mechanism associated with regions of anticorrelation of the Lagrangian
advecting velocity. Depending on the extension of the anticorrelated regions,
either an enhancement (corresponding to constructive interference) or a
depletion (corresponding to destructive interference) in the turbulent
transport now takes place.Comment: 8 pages, 3 figure
Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates
Depinning of two-dimensional liquid ridges and three-dimensional drops on an
inclined substrate is studied within the lubrication approximation. The
structures are pinned to wetting heterogeneities arising from variations of the
strength of the short-range polar contribution to the disjoining pressure. The
case of a periodic array of hydrophobic stripes transverse to the slope is
studied in detail using a combination of direct numerical simulation and
branch-following techniques. Under appropriate conditions the ridges may either
depin and slide downslope as the slope is increased, or first breakup into
drops via a transverse instability, prior to depinning. The different
transition scenarios are examined together with the stability properties of the
different possible states of the system.Comment: Physics synopsis link:
http://physics.aps.org/synopsis-for/10.1103/PhysRevE.83.01630
Measurement Of Quasiparticle Transport In Aluminum Films Using Tungsten Transition-Edge Sensors
We report new experimental studies to understand the physics of phonon
sensors which utilize quasiparticle diffusion in thin aluminum films into
tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic
TES physics and a simple physical model of the overlap region between the W and
Al films in our devices enables us to accurately reproduce the experimentally
observed pulse shapes from x-rays absorbed in the Al films. We further estimate
quasiparticle loss in Al films using a simple diffusion equation approach.Comment: 5 pages, 6 figures, PRA
Evidence for a singularity in ideal magnetohydrodynamics: implications for fast reconnection
Numerical evidence for a finite-time singularity in ideal 3D
magnetohydrodynamics (MHD) is presented. The simulations start from two
interlocking magnetic flux rings with no initial velocity. The magnetic
curvature force causes the flux rings to shrink until they come into contact.
This produces a current sheet between them. In the ideal compressible
calculations, the evidence for a singularity in a finite time is that the
peak current density behaves like for a range of
sound speeds (or plasma betas). For the incompressible calculations consistency
with the compressible calculations is noted and evidence is presented that
there is convergence to a self-similar state. In the resistive reconnection
calculations the magnetic helicity is nearly conserved and energy is
dissipated.Comment: 4 pages, 4 figure
- …