8 research outputs found

    From exotic phases to microscopic Hamiltonians

    Full text link
    We report recent analytical progress in the quest for spin models realising exotic phases. We focus on the question of `reverse-engineering' a local, SU(2) invariant S=1/2 Hamiltonian to exhibit phases predicted on the basis of effective models, such as large-N or quantum dimer models. This aim is to provide a point-of-principle demonstration of the possibility of constructing such microscopic lattice Hamiltonians, as well as to complement and guide numerical (and experimental) approaches to the same question. In particular, we demonstrate how to utilise peturbed Klein Hamiltonians to generate effective quantum dimer models. These models use local multi-spin interactions and, to obtain a controlled theory, a decoration procedure involving the insertion of Majumdar-Ghosh chainlets on the bonds of the lattice. The phases we thus realise include deconfined resonating valence bond liquids, a devil's staircase of interleaved phases which exhibits Cantor deconfinement, as well as a three-dimensional U(1) liquid phase exhibiting photonic excitations.Comment: Invited talk at Peyresq Workshop on "Effective models for low-dimensional strongly correlated systems". Proceedings to be published by AIP. v2: references adde

    Extended Quantum Dimer Model and novel valence-bond phases

    Get PDF
    We extend the quantum dimer model (QDM) introduced by Rokhsar and Kivelson so as to construct a concrete example of the model which exhibits the first-order phase transition between different valence-bond solids suggested recently by Batista and Trugman and look for the possibility of other exotic dimer states. We show that our model contains three exotic valence-bond phases (herringbone, checkerboard and dimer smectic) in the ground-state phase diagram and that it realizes the phase transition from the staggered valence-bond solid to the herringbone one. The checkerboard phase has four-fold rotational symmetry, while the dimer smectic, in the absence of quantum fluctuations, has massive degeneracy originating from partial ordering only in one of the two spatial directions. A resonance process involving three dimers resolves this massive degeneracy and dimer smectic gets ordered (order from disorder).Comment: 20 pages, 13 figures, accepted for publication in J. Stat. Mec

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    Full text link
    We construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor typos fixe

    Supersymmetric Model of Spin-1/2 Fermions on a Chain

    Full text link
    In recent work, N=2 supersymmetry has been proposed as a tool for the analysis of itinerant, correlated fermions on a lattice. In this paper we extend these considerations to the case of lattice fermions with spin 1/2 . We introduce a model for correlated spin-1/2 fermions with a manifest N=4 supersymmetry, and analyze its properties. The supersymmetric ground states that we find represent holes in an anti-ferromagnetic background.Comment: 15 pages, 10 eps figure

    Loop condensation in the triangular lattice quantum dimer model

    Full text link
    We study the mechanism of loop condensation in the quantum dimer model on the triangular lattice. The triangular lattice quantum dimer model displays a topologically ordered quantum liquid phase in addition to conventionally ordered phases with broken symmetry. In the context of systems with extended loop-like degrees of freedom, the formation of such topological order can be described in terms of loop condensation. Using Monte Carlo calculations with local and directed-loop updates, we compute geometric properties of the transition graph loop distributions of several triangular lattice quantum dimer wavefunctions that display dimer-liquid to dimer-crystal transitions and characterize these in terms of loop condensation.Comment: 22 pages, 12 figures, fixed references and minor typo

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    No full text
    16 pages, 15 figures; 1 figure and some references added; some minor typos fixedWe construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase

    Magnetization process of spin ice in a [111] magnetic field

    No full text
    13 pages, 13 figuresSpin ice in a magnetic field in the [111] direction displays two magnetization plateaux, one at saturation and an intermediate one with finite entropy. We study the crossovers between the different regimes from a point of view of (entropically) interacting defects. We develop an analytical theory for the nearest-neighbor spin ice model, which covers most of the magnetization curve. We find that the entropy is non-monotonic, exhibiting a giant spike between the two plateaux. This regime is described by a monomer-dimer model with tunable fugacities. At low fields, we develop an RG treatment for the extended string defects, and we compare our results to extensive Monte Carlo simulations. We address the implications of our results for cooling by adiabatic (de)magnetization
    corecore