545 research outputs found

    In-flight investigation of shuttle tile pressure orifice installations

    Get PDF
    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions

    A preliminary look at techniques used to obtain airdata from flight at high angles of attack

    Get PDF
    Flight research at high angles of attack has posed new problems for airdata measurements. New sensors and techniques for measuring the standard airdata quantities of static pressure, dynamic pressure, angle of attack, and angle of sideslip were subsequently developed. The ongoing airdata research supporting NASA's F-18 high alpha research program is updated. Included are the techniques used and the preliminary results. The F-18 aircraft was flown with three research airdata systems: a standard airdata probe on the right wingtip, a self-aligning airdata probe on the left wingtip, and a flush airdata system on the nose cone. The primary research goal was to obtain steady-state calibrations for each airdata system up to an angle of attack of 50 deg. This goal was accomplished and preliminary accuracies of the three airdata systems were assessed and are presented. An effort to improve the fidelity of the airdata measurements during dynamic maneuvering is also discussed. This involved enhancement of the aerodynamic data with data obtained from linear accelerometers, rate gyros, and attitude gyros. Preliminary results of this technique are presented

    Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Get PDF
    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied

    Wind-tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1.4

    Get PDF
    Flush pressure orifices installed on the nose section of a 1/7-scale model of the F-14 airplane were evaluated for use as a flush airdata system (FADS). Wing-tunnel tests were conducted in the 11- by 11-ft Unitary Wind Tunnel at NASA Ames Research Center. A full-scale FADS of the same configuration was previously tested using an F-14 aircraft at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden). These tests, which were published, are part of a NASA program to assess accuracies of FADS for use on aircraft. The test program also provides data to validate algorithms for the shuttle entry airdata system developed at the NASA Langley Research Center. The wind-tunnel test Mach numbers were 0.73, 0.90, 1.05, 1.20, and 1.39. Angles of attack were varied in 2 deg increments from -4 deg to 20 deg. Sideslip angles were varied in 4 deg increments from -8 deg to 8 deg. Airdata parameters were evaluated for determination of free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and Mach number. These parameters are, in most cases, the same as the parameters investigated in the flight test program. The basic FADS wind-tunnel data are presented in tabular form. A discussion of the more accurate parameters is included

    Procedural Decision Support Through The Use of PRODEMO

    Get PDF
    Procedural decisions, i.e., decisions involving the application of laws, regulations, prescriptions...constitute a tremendous amount of everyday decisions made in any kind of organizations. In this paper, decision tables are put forword as a basic technique enabling the user to structure and to check procedural decisions for completeness and correctness. It is shown that the use of the interactive PRODEMO (PROcedural DEcision MOdeling) system enhances the capabilities of the technique for modeling as well as for making procedural decisions

    Preliminary results from an airdata enhancement algorithm with application to high-angle-of-attack flight

    Get PDF
    A technique was developed to improve the fidelity of airdata measurements during dynamic maneuvering. This technique is particularly useful for airdata measured during flight at high angular rates and high angles of attack. To support this research, flight tests using the F-18 high alpha research vehicle (HARV) were conducted at NASA Ames Research Center, Dryden Flight Research Facility. A Kalman filter was used to combine information from research airdata, linear accelerometers, angular rate gyros, and attitude gyros to determine better estimates of airdata quantities such as angle of attack, angle of sideslip, airspeed, and altitude. The state and observation equations used by the Kalman filter are briefly developed and it is shown how the state and measurement covariance matrices were determined from flight data. Flight data are used to show the results of the technique and these results are compared to an independent measurement source. This technique is applicable to both postflight and real-time processing of data

    Local Flow Conditions for Propulsion Experiments on the NASA F-15B Propulsion Flight Test Fixture

    Get PDF
    Local flow conditions were measured underneath the National Aeronautics and Space Administration F-15B airplane to support development of future experiments on the Propulsion Flight Test Fixture (PFTF). The local Mach number and flow angles were measured using a conventional air data boom on a cone-cylinder mounted under the PFTF and compared with the airplane air data nose boom measurements. At subsonic flight speeds, the airplane and PFTF Mach numbers were approximately equal. Transonic Mach number values were up to 0.1 greater at the PFTF than the airplane, which is a counterintuitive result. The PFTF local supersonic Mach numbers were as much as 0.46 less than the airplane values. The maximum local Mach number at the PFTF was approximately 1.6 at an airplane Mach number near 2.0. The PFTF local angle of attack was negative at all Mach numbers, ranging from -3 to -8 degrees. When the airplane angle of sideslip was zero, the PFTF local value was zero between Mach 0.8 and Mach 1.1, -2 degrees between Mach 1.1 and Mach 1.5, and increased from zero to 1 degree from Mach 1.5 to Mach 2.0. Airplane inlet shock waves crossed the aerodynamic interface plane between Mach 1.85 and Mach 1.90

    A Base Drag Reduction Experiment on the X-33 Linear Aerospike SR-71 Experiment (LASRE) Flight Program

    Get PDF
    Drag reduction tests were conducted on the LASRE/X-33 flight experiment. The LASRE experiment is a flight test of a roughly 20% scale model of an X-33 forebody with a single aerospike engine at the rear. The experiment apparatus is mounted on top of an SR-71 aircraft. This paper suggests a method for reducing base drag by adding surface roughness along the forebody. Calculations show a potential for base drag reductions of 8-14%. Flight results corroborate the base drag reduction, with actual reductions of 15% in the high-subsonic flight regime. An unexpected result of this experiment is that drag benefits were shown to persist well into the supersonic flight regime. Flight results show no overall net drag reduction. Applied surface roughness causes forebody pressures to rise and offset base drag reductions. Apparently the grit displaced streamlines outward, causing forebody compression. Results of the LASRE drag experiments are inconclusive and more work is needed. Clearly, however, the forebody grit application works as a viable drag reduction tool

    Letter to the editor, "Validation and clinical value of the MANAGE-PD tool:A clinician-reported tool to identify Parkinson's disease patients inadequately controlled on oral medications"

    Get PDF
    The MANAGE-PD tool may help general neurologists in deciding whether a patient with advanced Parkinson's disease should be referred for an advanced therapy. Although the development and clinical validation of MANAGE-PD would appear to serve an important need, we urge the reader to be aware of several methodological concerns.</p

    Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A

    Get PDF
    A new aerodynamic model has been developed and validated for a modified F/A-18A used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research aircraft was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW aircraft and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights
    corecore