61 research outputs found

    Lung function and airway inflammation monitoring after hematopoietic stem

    Full text link

    Local and systemic cellular inflammation and cytokine release in chronic obstructive pulmonary disease.

    Full text link
    peer reviewedBACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease caused by repeated exposure to noxious gases or particles. It is now recognized that the disease also features systemic inflammation. The purpose of our study was to compare airway and systemic inflammation in COPD to that seen in healthy subjects and to relate the inflammation with the disease severity. METHODS: Ninety-five COPD patients, encompassing the whole severity spectrum of the disease, were recruited from our outpatient clinic and rehabilitation center and compared to 33 healthy subjects. Induced sputum and blood samples were obtained for measurement of inflammatory cell count. Interleukin (IL)-4, IL-6, IL-10, TNF-alpha and IFN-gamma produced by 24h sputum and blood cell cultures were measured. RESULTS: Compared to healthy subjects, COPD exhibited a prominent airway neutrophilic inflammation associated with a marked IL-10, IL-6 and TNF-alpha release deficiency that contrasted with a raised IFN-gamma production. Neutrophilic inflammation was also prominent at blood level together with raised production of IFN-gamma, IL-10 and TNF-alpha. Furthermore, sputum neutrophilia correlated with disease severity assessed by GOLD stages. Likewise the extent of TNF-alpha release from blood cells also positively correlated with the disease severity but negatively with that of sputum cell culture. Blood release of TNF-alpha and IL-6 negatively correlated with body mass index. Altogether, our results showed a significant relationship between cellular marker in blood and sputum but poor relationship between local and systemic release of cytokines. CONCLUSIONS: COPD is characterized by prominent neutrophilic inflammation and raised IFN-gamma production at both bronchial and systemic level. Overproduction of TNF-alpha at systemic level correlates with disease severity and inversely with body mass index

    Chronic infection with Chlamydia pneumoniae in asthma: a type-2 low infection related phenotype.

    Full text link
    BACKGROUND: Chlamydia pneumoniae and Mycoplasma pneumoniae have been implicated in the pathogenesis of asthma and are responsible for chronic inflammation when host immune system fails to eradicate the bacteria. METHOD: We performed a prospective study on 410 patients who underwent a visit at the asthma clinic of CHU of Liege between June 2016 and June 2018 with serology testing for C. pneumoniae and M. pneumoniae. RESULTS: 65% of our asthmatic population had serum IgA and/or IgG towards C. pneumoniae, while only 12.6% had IgM and/or IgG against M. pneumoniae. Compared to seronegative asthmatics, asthmatics with IgA+ and IgG+ against C. pneumoniae were more often male and older with a higher proportion of patients with smoking history. They received higher doses of inhaled corticosteroids (ICS) and displayed lower FEV(1)/FVC ratio, higher RV/TLC ratio and lower conductance. They had higher levels of fibrinogen, though in the normal range and had lower sputum eosinophil counts. Patients with IgA- and IgG+ against C. pneumoniae were older and had higher blood monocyte counts and alpha-1-antitrypsin levels as compared to seronegative patients. Patients with IgM and/or IgG towards M. pneumoniae were more often males than seronegative asthmatics. In a subpopulation of 14 neutrophilic asthmatics with Chlamydia pneumoniae IgA + /IgG + treated with macrolides, we found a significant decrease in blood neutrophils and normalization of sputum neutrophil count but no effect on asthma quality of life and exacerbations. CONCLUSION: Positive Chlamydia serologic test is more common than positive Mycoplasma serology. Asthmatics with IgA and IgG against C. pneumoniae have more severe disease with increased airway obstruction, higher doses of ICS, more signs of air trapping and less type-2 inflammation.Peer reviewe

    Sputum IL-25, IL-33 and TSLP, IL-23 and IL-36 in airway obstructive diseases. Reduced levels of IL-36 in eosinophilic phenotype.

    Full text link
    peer reviewedINTRODUCTION: Alarmins ((IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)) are known to promote Th2 inflammation and could be associated with eosinophilic airway infiltration. They may also play a role in airway remodeling in chronic airway obstructive diseases such as asthma and chronic obstructive pulmonary disease (COPD). IL-23 and IL-36 were shown to mediate the neutrophilic airway inflammation as seen in chronic airway obstructive diseases. OBJECTIVES: The purpose of this project was to determine the expression and the production of these cytokines from induced sputum (IS) in patients with chronic airway obstructive diseases including asthmatics and COPD. The relationship of the mediators with sputum inflammatory cellular profile and the severity of airway obstruction was assessed. METHODS: The alarmins (IL-25, IL-33 and TSLP) as well as IL-23 and IL-36 concentrations were measured in IS from 24 asthmatics and 20 COPD patients compared to 25 healthy volunteers. The cytokines were assessed by ELISA in the IS supernatant and by RT-qPCR in the IS cells. RESULTS: At protein level, no difference was observed between controls and patients suffering from airway obstructive diseases regarding the different mediators. IL-36 protein level was negatively correlated with sputum eosinophil and appeared significantly decreased in patients with an eosinophilic airway inflammation compared to those with a neutrophilic profile and controls. At gene level, only IL-36, IL-23 and TSLP were measurable but none differed between controls and patients with airway obstructive diseases. IL-36 and IL-23 were significantly increased in patients with an neutrophilic inflammatory profile compared to those with an eosinophilic inflammation and were correlated with sputum neutrophil proportions. None of the mediators were linked to airway obstruction. CONCLUSIONS: The main finding of our study is that patients with eosinophilic airway inflammation exhibited a reduced IL-36 level which could make them more susceptible to airway infections as IL-36 is implicated in antimicrobial defense. This study showed also an implication of IL-36 and IL-23 in airway neutrophilic inflammation in chronic airway obstructive diseases

    Inflammatory profile of induced sputum composition in systemic sclerosis and comparison with healthy volunteers.

    Full text link
    Systemic sclerosis (SSc) is a potentially serious and disabling connective tissue disease specially in case of interstitial lung disease (SSc-ILD). The aim of our study was to evaluate the potential utility of dosing in the induced sputum (IS) and to compare their levels in SSc-ILD and SSc-nonILD patients, as well as in healthy volunteers (HV). IS and sera values were also compared. In a prospective cross-sectional analysis, we studied the IS and serum provided from 25 SSc patients, 15 SSc-nonILD and 10 SSc-ILD, compared to 25 HV. We analyzed sputum cell composition and quantified in the supernatant and corresponding serum by commercially available immunoassays: IGFBP-1, IGFBP-2, IGFBP-3, TGF-β, IL-8, TNF-α, YKL-40, MMP-7 and MMP-9. Lung function was studied by the determination of FEV-1 (%), FVC (%), DLCO (%) and KCO (%). The IS of SSc patients had a lower weight than HV (p<0.05, p<0.01) without any significant difference with regard to the cellularity. IGFBP-1 (p < 0.0001), TGF-β (p < 0.05), IL-8 (p < 0.05), YKL-40 (p < 0.0001) and MMP-7 (p < 0.01) levels were increased in the IS of SSc patients compared to HV. Only IL-8 serum levels (p < 0.001) were increased in SSc patients compared to HV. Neither in IS nor in serum were observed differences between SSc-ILD and SSc-nonILD patients. Correlations were observed between IS IL-8 levels and FEV-1 (%) (r =  = - 0.53, p < 0.01), FVC (%) (r = - 0.51, p < 0.01) and annualized ∆KCO (%) (r = 0.57, p < 0.05), between IS TGF-β levels and annualized ∆FEV-1 (%) (r =  = - 0.57, p < 0.05), between IS IGFBP-2 levels and annualized ∆KCO (%) (r = 0.56, p < 0.05). Our study showed that SSc patients exhibit raised IS levels of IGFBP-1, TGF-β, IL-8, YKL-40 and MMP-7, molecules known to be involved in lung remodeling and fibrotic process, without any significant difference between SSc-ILD and SSc-nonILD patients. IL-8, TGF-β and IGFBP-2 are correlated with lung function in SSc patients which emphasize clinical relevance. IS analysis represents a new approach to understand lung inflammatory process in SSc patients. A longitudinal study is needed to evaluate their pathophysiological relevance

    A new nucleosomic-based model to identify and diagnose SSc-ILD

    Full text link
    peer reviewedBACKGROUND: Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapid evolving interstitial lung disease (SSc-ILD), driving its mortality. Specific biomarkers associated with the evolution of the lung disease are highly needed. We aimed to identify specific biomarkers of SSc-ILD to predict the evolution of the disease. Nucleosomes are stable DNA/protein complexes that are shed into the blood stream making them ideal candidates for biomarkers. METHODS: We studied circulating cell-free nucleosomes (cf-nucleosomes) in SSc patients, 31 with ILD (SSc-ILD) and 67 without ILD. We analyzed plasma levels for cf-nucleosomes and investigated whether global circulating nucleosome levels in association with or without other biomarkers of interest for systemic sclerosis or lung fibrosis (e.g., serum growth factors: IGFBP-1 and the MMP enzyme: MMP-9), could be suitable potential biomarkers for the correct identification of SSc-ILD disease. RESULTS: We found that H3.1 nucleosome levels were significantly higher in patients with SSc-ILD compared SSc patients without ILD (p < 0.05) and levels of MMP-9 were significantly increased in patients with SSc-ILD compared to SSc patients without ILD (p < 0.05). Conversely, IGFBP-1 was significantly reduced in patients with SSc-ILD compared to SSc without ILD (p < 0.001). The combination of cf-nucleosomes H3.1 coupled to MMP-9 and IGFBP-1 increased the sensitivity for the differential detection of SSc-ILD. High levels of accuracy were reached with this combined model: its performances are strong with 68.4% of positive predictive value and 77.2% of negative predictive value for 90% of specificity. With our model, we identified a significant negative correlation with FVC % pred (r = -0.22) and TLC % pred (r = -0.31). The value of our model at T1 (baseline) has a predictive power over the Rodnan score at T2 (after 6-18 months), showed by a significant linear regression with R2 = 19% (p = 0.013). We identified in the sole group of SSc-ILD patients a significant linear regression with a R2 = 54.4% with the variation of DLCO between T1 and T2 (p < 0.05). CONCLUSION: In our study, we identified a new blood-based model with nucleosomic biomarker in order to diagnose SSc-ILD in a SSc cohort. This model is correlated with TLC and FVC at baseline and predictive of the skin evolution and the DLCO. Further longitudinal exploration studies should be performed in order to evaluate the potential of such diagnostic and predictive model

    Role of IL-17A in murine models of COPD airway disease.

    Full text link
    peer reviewedSmall airway fibrosis is a major pathological feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Chronic inflammatory cells accumulate around small airways in COPD and are thought to play a major role in small airway fibrosis. Mice deficient in alpha/beta T cells have recently been shown to be protected from both experimental airway inflammation and fibrosis. In these models, CD4+Th17 cells and secretion of IL-17A are increased. However, a pathogenic role for IL-17 in specifically mediating fibrosis around airways has not been demonstrated. Here a role for IL-17A in airway fibrosis was demonstrated using mice deficient in the IL-17 receptor A (il17ra) Il17ra-deficient mice were protected from both airway inflammation and fibrosis in two different models of airway fibrosis that employ COPD-relevant stimuli. In these models, CD4+ Th17 are a major source of IL-17A with other expressing cell types including gammadelta T cells, type 3 innate lymphoid cells, polymorphonuclear cells, and CD8+ T cells. Antibody neutralization of IL-17RA or IL-17A confirmed that IL-17A was the relevant pathogenic IL-17 isoform and IL-17RA was the relevant receptor in airway inflammation and fibrosis. These results demonstrate that the IL-17A/IL-17 RA axis is crucial to murine airway fibrosis. These findings suggest that IL-17 might be targeted to prevent the progression of airway fibrosis in COPD

    A critical role for dendritic cells in the evolution of IL-1beta-mediated murine airway disease.

    Full text link
    peer reviewedChronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease and are refractory to current treatments. How and whether chronic inflammation contributes to airway fibrosis remain controversial. In this study, we use a model of chronic obstructive pulmonary disease airway disease utilizing adenoviral delivery of IL-1beta to determine that adaptive T cell immunity is required for airway remodeling because mice deficient in alpha/beta T cells (tcra(-/-)) are protected. Dendritic cells (DCs) accumulate around chronic obstructive pulmonary disease airways and are critical to prime adaptive immunity, but they have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor ccr6 both protect from adenoviral IL-1beta-induced airway adaptive T cell immune responses and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of alpha/beta T cells and driven by DCs, is critical to airway fibrosis
    • …
    corecore