100 research outputs found

    Generation and in vivo characterization of a chimeric αvβ5-targeting antibody 14C5 and its derivatives

    Get PDF
    Background: Previous studies showed that radiolabeled murine monoclonal antibody (mAb) 14C5 and its Fab and F(ab')2 fragments, targeting αvβ5 integrin, have promising properties for diagnostic and therapeutic applications in cancer. To diminish the risk of generating a human anti-mouse antibody response in patients, chimeric variants were created. The purpose of this study was to recombinantly produce chimeric antibody (chAb) derivatives of the murine mAb 14C5 and to evaluate the in vitro and in vivo characteristics. Methods: In vitro stability, specificity, and affinity of radioiodinated chAb and fragments (Iodo-Gen method) were examined on high-expressing αvβ5 A549 lung tumor cells. In vivo biodistribution and pharmacokinetic characteristics were studied in A549 lung tumor-bearing Swiss Nu/Nu mice. Results: Saturation binding experiments revealed high in vitro affinity of radioiodinated chAb, F(ab')2, and Fab, with dissociation constants (KD) of 1.19 ± 0.19, 0.68 ± 0.10, and 2.11 ± 0.58 nM, respectively. ChAb 14C5 showed highest tumor uptake (approximately 10%ID/g) at 24 h post injection, corresponding with other high-affinity Abs. ChF(ab')2 and chFab fragments showed faster clearance from the blood compared to the intact Ab. Conclusions: The chimerization of mAb 14C5 and its fragments has no or negligible effect on the properties of the antibody. In vitro and in vivo properties show that the chAb 14C5 is promising for radioimmunotherapy, due to its high maximum tumor uptake and its long retention in the tumor. The chF(ab')2 fragment shows a similar receptor affinity and a faster blood clearance, causing less non-specific retention than the chAb. Due to their fast blood clearance, the fragments show high potential for radioimmunodiagnosis

    Automated radiosynthesis of Al[18F]PSMA-11 for large scale routine use.

    Get PDF
    Objectives: We report a reproducible automated radiosynthesis for large scale batch production of clinical grade Al[F-18]PSMA-11. Methods: A SynthraFCHOL module was optimized to synthesize Al[F-18]PSMA-11 by Al[F-18]-chelation. Results Al[F-18]PSMA-11 was synthesized within 35 min in a yield of 21 +/- 3% (24.0 +/- 6.0 GBq) and a radiochemical purity > 95%. Batches were stable for 4 h and conform the European Pharmacopeia guidelines. Conclusions: The automated synthesis of Al[F-18]PSMA-11 allows for large scale production and distribution of Al [F-18]PSMA-11

    P-glycoprotein at the blood-brain barrier: kinetic modeling of 11C-desmethylloperamide in mice using a 18F-FDG μPET scan to determine the input function

    Get PDF
    Purpose: The objective of this study is the implementation of a kinetic model for 11C-desmethylloperamide (11CdLop) and the determination of a typical parameter for P-glycoprotein (P-gp) functionality in mice. Since arterial blood sampling in mice is difficult, an alternative method to obtain the arterial plasma input curve used in the kinetic model is proposed. Methods: Wild-type (WT) mice (pre-injected with saline or cyclosporine) and P-gp knock-out (KO) mice were injected with 20 MBq of 11C-dLop, and a dynamic μPET scan was initiated. Afterwards, 18.5 MBq of 18F-FDG was injected, and a static μPET scan was started. An arterial input and brain tissue curve was obtained by delineation of an ROI on the left heart ventricle and the brain, respectively based on the 18F-FDG scan. Results: A comparison between the arterial input curves obtained by the alternative and the blood sampling method showed an acceptable agreement. The one-tissue compartment model gives the best results for the brain. In WT mice, the K1/k2 ratio was 0.4 ± 0.1, while in KO mice and cyclosporine-pretreated mice the ratio was much higher (2.0 ± 0.4 and 1.9 ± 0.2, respectively). K1 can be considered as a pseudo value K1, representing a combination of passive influx of 11C-desmethylloperamide and a rapid washout by P-glycoprotein, while k2 corresponds to slow passive efflux out of the brain. Conclusions: An easy to implement kinetic modeling for imaging P-glycoprotein function is presented in mice without arterial blood sampling. The ratio of K1/k2 obtained from a one-tissue compartment model can be considered as a good value for P-glycoprotein functionality
    corecore