62 research outputs found

    Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    Get PDF
    [(18)F]FluorTriopride ([(18)F]FTP) is a dopamine D(3)-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [(18)F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [(18)F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [(18)F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [(18)F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination

    Spatial reorganization of putaminal dopamine D2-like receptors in cranial and hand dystonia

    Get PDF
    The putamen has a somatotopic organization of neurons identified by correspondence of firing rates with selected body part movements, as well as by complex, but organized, differential cortical projections onto putamen. In isolated focal dystonia, whole putaminal binding of dopamine D(2)-like receptor radioligands is quantitatively decreased, but it has not been known whether selected parts of the putamen are differentially affected depending upon the body part affected by dystonia. The radioligand [(18)F]spiperone binds predominantly to D(2)-like receptors in striatum. We hypothesized that the spatial location of [(18)F]spiperone binding within the putamen would differ in patients with dystonia limited to the hand versus the face, and we tested that hypothesis using positron emission tomography and magnetic resonance imaging. To address statistical and methodological concerns, we chose a straightforward but robust image analysis method. An automated algorithm located the peak location of [(18)F]spiperone binding within the striatum, relative to a brain atlas, in each of 14 patients with cranial dystonia and 8 patients with hand dystonia. The mean (left and right) |x|, y, and z coordinates of peak striatal binding for each patient were compared between groups by t test. The location of peak [(18)F]spiperone binding within the putamen differed significantly between groups (cranial dystonia z<hand dystonia z, p = 0.016). We conclude that in isolated focal dystonia, dopamine D(2)-like receptors are distributed differently in the putamen depending on the body part manifesting dystonia

    Validation of the reference tissue model for estimation of dopaminergic D2-like receptor binding with [18F](N-methyl)benperidol in humans

    No full text
    PET measurements of dopaminergic D(2)-like receptors may provide important insights into disorders such as Parkinson's disease, schizophrenia, dystonia and Tourette's syndrome. The PET radioligand [(18) F] (N-Methyl)Benperidol ([(18)F]-NMB) has high affinity and selectivity for D(2)-like receptors and is not displaced by endogenous dopamine. The goal of this study is to evaluate use of a graphical method utilizing a reference tissue region for ([(18)F]-NMB PET analysis by comparisons to an explicit three-compartment tracer kinetic model and graphical method that use arterial blood measurements. We estimated binding potential (BP) in the caudate and putamen using all three methods in 16 humans and found that the three-compartment tracer kinetic method provided the highest BP estimates while the graphical method using a reference region yielded the lowest estimates (p<0.0001 by repeated measures ANOVA). However, the three methods yielded highly correlated BP estimates for the two regions of interest. We conclude that the graphical method using a reference region still provides a useful estimate of BP comparable to methods using arterial blood sampling, especially since the reference region method is less invasive and computationally more straightforward; thereby simplifying these measurements

    Reduced uptake of FDOPA PET in end-stage liver disease with elevated manganese levels

    No full text
    OBJECTIVE: To investigate whether manganese toxicity secondary to end-state liver disease is associated with nigrastriatal dysfunction as measured by 6-[(18)F]fluoro-L-DOPA (FDOPA) positron emission tomographic (PET) imaging. DESIGN: Observational case report. SETTING: The Movement Disorder Center at Washington University, St Louis, Missouri. PATIENT: An individual with manganese toxicity secondary to end-stage liver disease. His FDOPA PET was compared with those of 10 idiopathic Parkinson disease patients and 10 age- and sex-matched healthy controls. MAIN OUTCOME MEASURE: The average estimated net FDOPA uptake by Patlak graphical analysis for caudate, anterior putamen, and posterior putamen. RESULTS: The FDOPA uptake for the patient with secondary manganese toxicity was reduced across all regions by more than 2 SDs compared with healthy controls: caudate (reduced 24.7%), anterior putamen (28.0%), and posterior putamen (29.3%). The ratio of uptake between the caudate/posterior putamen was 0.99 and was different from that of idiopathic Parkinson disease patients, in whom the greatest reduction of FDOPA was in the posterior putamen (mean [SD] ratio, 1.65 [0.41]). CONCLUSIONS: Reduce striatal uptake of FDOPA uptake indicates dysfunction of the nigrostriatal pathways in manganese toxicity secondary to end-stage liver disease. The pattern of striatal involvement with equal reduction of FDOPA uptake in the caudate compared with posterior putamen appears different from those previously reported in individuals with occupational manganese toxicity and idiopathic Parkinson disease and may be specific to manganese toxicity secondary to end-stage liver disease

    [18F]FDOPA PET and clinical features in parkinsonism due to manganism

    No full text
    Manganese exposure reportedly causes a clinically and pathophysiologically distinct syndrome from idiopathic Parkinson\u27s disease (PD). We describe the clinical features and results of positron emission tomography with 6-[18F]fluorodopa ([18F]FDOPA PET) of a patient with parkinsonism occurring in the setting of elevated blood manganese. The patient developed parkinsonism associated with elevated serum manganese from hepatic dysfunction. [18F]FDOPA PET demonstrated relatively symmetric and severely reduced [18F]FDOPA levels in the posterior putamen compared to controls. The globus pallidum interna had increased signal on T1-weighted magnetic resonance imaging (MRI) images. We conclude that elevated manganese exposure may be associated with reduced striatal [18F]FDOPA uptake, and MRI may reveal selective abnormality within the internal segment of the pallidum. This case suggests that the clinical and pathophysiological features of manganese-associated parkinsonism may overlap with that of PD

    [18F]FDOPA PET as an endophenotype for Parkinson\u27s Disease linkage studies

    No full text
    Parkinson disease (PD) is a late onset disorder with age-dependent penetrance that may confound genetic studies, since affected individuals may not demonstrate clinical manifestations at the time of evaluation. The use of endophenotypes, biologic surrogates for clinical disease diagnoses, may permit more accurate classification of at-risk subjects. Positron emission tomography (PET) measurements of 6-[18F]fluorodopa ([18F]FDOPA) uptake indicate nigrostriatal neuronal integrity and may provide a useful endophenotype for PD linkage studies. We performed [18F]FDOPA PET in 11 members of a large, multi-incident Amish family with PD, 24 normals and 48 people with clinically definite idiopathic PD (PD controls). Clinical diagnoses in the Amish were clinically definite PD in four, clinically probable in one, clinically possible in five, and normal in one. Abnormal [18F]FDOPA posterior putamen uptake was defined as less than 3 standard deviations below the normal mean. The criteria were applied to the Amish sample to determine a PET endophenotype for each. We performed genetic simulations using SLINK to model the effect phenoconversion with the PET endophenotype had on logarithm of odds (LOD) scores. PET endophenotype confirmed the status of two clinically definite subjects. Two clinically definite Amish PD subjects had normal PETs. Two possible PD were converted to PET definite PD. The remainder had normal PETs. The average maximum LOD score with the pre-PET was 6.14 +/- 0.84. Simulating phenoconversion of subjects with unknown phenotypes increased the LOD score to 7.36 +/- 1.23. The [18F]FDOPA PET endophenotype permits phenoconversion in multi-incident PD families and may increase LOD score accuracy and power of an informative pedigree
    • …
    corecore