4 research outputs found

    Efficacy of Stem Cell Therapy for Tendon Disorders:A Systematic Review

    Get PDF
    Background: Stem cell therapy is an emerging treatment for tendon disorders. Purpose: To systematically review the efficacy of stem cell therapy for patients with tendon disorders. Study Design: Systematic review; Level of evidence, 4. Methods: MEDLINE/PubMed, EMBASE, CINAHL, CENTRAL, PEDro, and SPORTDiscus; trial registers; and gray literature were searched to identify randomized controlled trials (RCTs) and non-RCTs, cohort studies, and case series with 5 or more cases. Studies investigating any type of stem cell therapy for patients with tendon disorders were eligible if they included patient-reported outcome measures or assessed tendon healing. Risk of bias was assessed through use of the Cochrane risk of bias tools. Results: This review included 8 trials (289 patients). All trials had moderate to high risk of bias (level 3 or 4 evidence). In Achilles tendon disorders, 1 trial found that allogenic-derived stem cells led to a faster recovery compared with platelet-rich plasma. Another study found no retears after bone marrow-derived stem cell therapy was used in addition to surgical treatment. There were 4 trials that studied the efficacy of bone marrow-derived stem cell therapy for rotator cuff tears. The controlled trials reported superior patient-reported outcomes and better tendon healing. A further 2 case series found that stem cell therapy improved patient-reported outcomes in patients with patellar tendinopathy and elbow tendinopathy. Conclusion: Level 3 evidence is available to support the efficacy of stem cell therapy for tendon disorders. The findings of available studies are at considerable risk of bias, and evidence-based recommendations for the use of stem cell therapy for tendon disorders in clinical practice cannot be made at this time. Stem cell injections should not be used in clinical practice given the lack of knowledge about potentially serious adverse effects

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    The treatment of medial tibial stress syndrome in athletes; a randomized clinical trial

    Get PDF
    The only three randomized trials on the treatment of MTSS were all performed in military populations. The treatment options investigated in this study were not previously examined in athletes. This study investigated if functional outcome of three common treatment options for medial tibial stress syndrome (MTSS) in athletes in a non-military setting was the same. The study design was randomized and multi-centered. Physical therapists and sports physicians referred athletes with MTSS to the hospital for inclusion. 81 athletes were assessed for eligibility of which 74 athletes were included and randomized to three treatment groups. Group one performed a graded running program, group two performed a graded running program with additional stretching and strengthening exercises for the calves, while group three performed a graded running program with an additional sports compression stocking. The primary outcome measure was: time to complete a running program (able to run 18 minutes with high intensity) and secondary outcome was: general satisfaction with treatment. 74 Athletes were randomized and included of which 14 did not complete the study due a lack of progress (18.9%). The data was analyzed on an intention-to-treat basis. Time to complete a running program and general satisfaction with the treatment were not significantly different between the three treatment groups. This was the first randomized trial on the treatment of MTSS in athletes in a non-military setting. No differences were found between the groups for the time to complete a running program. CCMO; NL23471.098.0
    corecore