6,099 research outputs found

    The nonperturbative closed string tachyon vacuum to high level

    Full text link
    We compute the action of closed bosonic string field theory at quartic order with fields up to level ten. After level four, the value of the potential at the minimum starts oscillating around a nonzero negative value, in contrast with the proposition made in [5]. We try a different truncation scheme in which the value of the potential converges faster with the level. By extrapolating these values, we are able to give a rather precise value for the depth of the potential.Comment: 24 pages. v2: typos corrected, clarified extrapolation in scheme B, and added extrapolated tachyon and dilaton vev's at the end of Section

    Zeta Nonlocal Scalar Fields

    Full text link
    We consider some nonlocal and nonpolynomial scalar field models originated from p-adic string theory. Infinite number of spacetime derivatives is determined by the operator valued Riemann zeta function through d'Alembertian □\Box in its argument. Construction of the corresponding Lagrangians L starts with the exact Lagrangian Lp\mathcal{L}_p for effective field of p-adic tachyon string, which is generalized replacing p by arbitrary natural number n and then taken a sum of Ln\mathcal{L}_n over all n. The corresponding new objects we call zeta scalar strings. Some basic classical field properties of these fields are obtained and presented in this paper. In particular, some solutions of the equations of motion and their tachyon spectra are studied. Field theory with Riemann zeta function dynamics is interesting in its own right as well.Comment: 13 pages, submitted to Theoretical and Mathematical Physic

    Vortex ring refraction at large Froude numbers

    Full text link
    We have experimentally studied the impact of an initially planar axisymmetric vortex ring, incident at an oblique angle, upon a gravity-induced interface separating two fluids of differing densities. After impact, the vortex ring was found to exhibit a variety of subsequent trajectories, which we organize according to both the incidence angle, Ξi\theta_i, and the interface strength, defined as the ratio of the Atwood and Froude numbers, A/FA/F. For grazing incidence angles (Ξi≳70\theta_i \gtrsim 70 deg.) vortices either penetrate or reflect from the interface, depending on whether the interface is weak or strong. In some cases, reflected vortices execute damped oscillations before finally disintegrating. For smaller incidence angles (Ξiâ‰Č70\theta_i \lesssim 70 deg.) vortices penetrate the interface. When there is a strong interface, these vortices are observed to curve back up toward the interface. When there is a weak interface, these vortices are observed to refract downward, away from the interface. The critical interface strength below which vortex ring refraction is observed is given by log⁥10(A/F)=−2.38±0.05\log_{10}{(A/F)}= -2.38 \pm 0.05.Comment: 26 pages, 11 figures; Submitted to Physical Review

    Formulation of the Spinor Field in the Presence of a Minimal Length Based on the Quesne-Tkachuk Algebra

    Full text link
    In 2006 Quesne and Tkachuk (J. Phys. A: Math. Gen. {\bf 39}, 10909, 2006) introduced a (D+1)-dimensional (ÎČ,ÎČâ€Č)(\beta,\beta')-two-parameter Lorentz-covariant deformed algebra which leads to a nonzero minimal length. In this work, the Lagrangian formulation of the spinor field in a (3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant deformed algebra is studied in the case where ÎČâ€Č=2ÎČ\beta'=2\beta up to first order over deformation parameter ÎČ\beta. It is shown that the modified Dirac equation which contains higher order derivative of the wave function describes two massive particles with different masses. We show that physically acceptable mass states can only exist for ÎČ<18m2c2\beta<\frac{1}{8m^{2}c^{2}}. Applying the condition ÎČ<18m2c2\beta<\frac{1}{8m^{2}c^{2}} to an electron, the upper bound for the isotropic minimal length becomes about 3×10−13m3 \times 10^{-13}m. This value is near to the reduced Compton wavelength of the electron (λc=ℏmec=3.86×10−13m)(\lambda_c = \frac{\hbar}{m_{e}c} = 3.86\times 10^{-13} m) and is not incompatible with the results obtained for the minimal length in previous investigations.Comment: 11 pages, no figur

    Rolling to the tachyon vacuum in string field theory

    Full text link
    We argue that the rolling-tachyon solution in cubic OSFT proceeds at late times to precisely the analytic tachyon-vacuum solution constructed by Schnabl. In addition, we demonstrate the relationship between the rolling-tachyon solution and the standard BCFT description by showing that there is a finite gauge transformation which relates the two.Comment: 16 pages, 5 figures, References and comments adde

    A perturbative analysis of tachyon condensation

    Get PDF
    Tachyon condensation in the open bosonic string is analyzed using a perturbative expansion of the tachyon potential around the unstable D25-brane vacuum. Using the leading terms in the tachyon potential, Pad\'e approximants can apparently give the energy of the stable vacuum to arbitrarily good accuracy. Level-truncation approximations up to level 10 for the coefficients in the tachyon potential are extrapolated to higher levels and used to find approximants for the full potential. At level 14 and above, the resulting approximants give an energy less than -1 in units of the D25-brane tension, in agreement with recent level-truncation results by Gaiotto and Rastelli. The extrapolated energy continues to decrease below -1 until reaching a minimum near level 26, after which the energy turns around and begins to approach -1 from below. Within the accuracy of this method, these results are completely consistent with an energy which approaches -1 as the level of truncation is taken to be arbitrarily large.Comment: 8 pages, 3 eps figures, Latex; v2: typo correcte

    Proof of vanishing cohomology at the tachyon vacuum

    Get PDF
    We prove Sen's third conjecture that there are no on-shell perturbative excitations of the tachyon vacuum in open bosonic string field theory. The proof relies on the existence of a special state A, which, when acted on by the BRST operator at the tachyon vacuum, gives the identity. While this state was found numerically in Feynman-Siegel gauge, here we give a simple analytic expression.Comment: 19 pages, 4 figures; v2: references adde
    • 

    corecore