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1. Introduction

Following Sen’s famous three conjectures [1, 2], there has been an intensive effort to study

the physics of tachyon condensation in Witten’s cubic open string field theory [3]. The

power of open string field theory (OSFT) over conventional CFT methods is that OSFT

is an off-shell formulation of open string interactions. Many questions about open string

vacua, which must be understood using indirect arguments in CFT, can be rephrased in

OSFT as questions about the classical solutions of the OSFT equations of motion.

Unfortunately, finding solutions to the OSFT equations of motion is non-trivial. In-

deed, in the standard oscillator basis, these equations become an infinite number of coupled

non-linear differential equations and, until recently, much of the work in OSFT has been

numerical.

In spite of the approximate nature of the analysis, it has been found that OSFT has a

rich structure. Starting from perturbative vacuum on the D25-brane, one can find classical

solutions to the equations of motion representing lower-dimensional branes [4 – 7] as well

as the tachyon vacuum [8 – 11], in which there are no branes present. In each case, the

energy of these solutions precisely matches the energy of the relevant brane configuration,

beautifully demonstrating Sen’s first and second conjectures.

Having found solutions representing various vacua, one can attempt to find the spec-

trum of perturbative states around each solution. In particular, Sen’s third conjecture

– 1 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
6

states that around the tachyon vacuum, which represents the absence of any brane at all,

there should be no physical states. This conjecture has been checked in two complementary

ways. First, the kinetic terms and gauge transformations of certain low-mass excitations

were computed to verify that, indeed, there were no on-shell states [12 – 14]. Second, it was

argued that the full spectrum of states was empty using a trick, which we now describe [15].

The physical states around a given vacuum are given by the cohomology of a BRST

operator QΨ. It turns out that the cohomology of QΨ vanishes — meaning that there are

no physical states — if and only if there exists a state A such that QΨA = I, where I

is the identity of the star algebra. Hence, the problem of showing that QΨ has vanishing

cohomology reduces to determining whether there is a solution to a single linear equation.

This makes the problem amenable to numerical analysis and it was found in [15] that,

within the level-truncation approximation, one could find such a state A.

Recently, one of us found an analytic solution to the OSFT equations of motion repre-

senting the tachyon vacuum [16]. This solution has now been checked to satisfy the equa-

tions of motion, even when contracted with itself [17, 18], and has the correct energy [16],

giving an analytic proof of Sen’s first conjecture. This solution opens up the possibility

that other questions in OSFT, which previously had only been understood numerically,

may have nice analytic solutions.

Indeed, in this paper we give a simple proof of Sen’s third conjecture. We do this

following the method described above: given the analytic solution Ψ, we find an analytic

expression for a state A that satisfies QΨA = I.

The organization of this paper is as follows: in section 2, we review the relevant aspects

of OSFT. In section 3 we present the recently found analytic solution to the equations of

motion, Ψ. Next, in section 4, we define a new string field A, which we then prove satisfies

QΨA = I. Finally, in section 5, we discuss the fact that the tachyon vacuum is a limit of a

family of pure-gauge solutions and show how this does not spoil our cohomology arguments.

2. Review of OSFT

We begin with a review of some basic aspects of Witten’s cubic open string field theory.

Since there are many excellent reviews of OSFT [19, 9, 20, 21], we will only touch on some

of the more relevant points. The action is given by [3]

S =
1

2

∫
Φ ∗ QBΦ +

1

3

∫
Φ ∗ Φ ∗ Φ. (2.1)

The classical field, Φ, is an element of the free string Fock space. For example, for OSFT

on a D25-brane background, it has an expansion,

Φ =

∫
dp

{
t(p) + Aµ(p)αµ

−1 + ψ(p)c0 + . . .
}

c1|p〉, (2.2)

where t(p) is the tachyon, Aµ(p) is the gauge field and ψ(p) is a ghost field.
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The action (2.1) has a large gauge invariance, which makes solving the equations of

motion in the non-gauge-fixed theory difficult;1

Φ → Φ + QBΛ + [Φ,Λ]. (2.3)

Globally, fixing a gauge is a subtle issue [22]. Around the perturbative vacuum, however,

a suitable choice is Feynman-Siegel gauge;

b0Φ = 0. (2.4)

Most of the numerical work in OSFT was performed in this gauge. However, as we will

discuss shortly, there is a different gauge which is more suitable for analytic analysis.

The equations of motion of (2.1) are given by

QBΨ + Ψ ∗ Ψ = 0. (2.5)

Given a solution, Ψ, one can re-expand the action around the new vacuum;

S(Ψ + Φ) =
1

2

∫
Φ ∗ QΨΦ +

1

3

∫
Φ ∗ Φ ∗ Φ + constant. (2.6)

The new action takes the same form as the old action: the cubic term is left completely

invariant, while the kinetic term is only modified by a change in the BRST operator,

QB → QΨ, where

QΨΛ = QBΛ + [Ψ,Λ]. (2.7)

It is straightforward to check that Q2
Ψ = 0 using the equations of motion of Ψ. Just as

the spectrum around the perturbative vacuum was given by the cohomology of QB, the

spectrum around the new vacuum is given by the cohomology of QΨ.

2.1 OSFT in the arctan(z) coordinate system

Most of the difficulty in working with OSFT arises from the complexity of the star product.

It was one of the key realizations of [23, 16], however, that the star product simplifies when

written in a different coordinate frame.

The standard method for specifying states in open string theory is by putting a vertex

operator, V, on the boundary of the upper half plane at the point z = 0. By the operator-

state correspondence we can associate with V a state |V〉 in the string Fock space that lives

on the unit circle.

However, there was no reason why we had to choose the upper half plane to define our

states. It turns out to be useful to work instead in the coordinate z̃ = f(z) = arctan(z).

Under z → f(z), the upper half plane is mapped to an infinitely tall cylinder as illustrated

in figure 1. In this frame, the star product can be described purely geometrically; one

1The commutator is taken using the star product and is graded by ghost number. Explicitly,

[Φ1, Φ2] = Φ1 ∗ Φ2 − (−1)gh(Φ1)gh(Φ2)Φ2 ∗ Φ1
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Figure 1: The string field as seen by two coordinate systems. In a) the standard description on

upper half plane is illustrated. A vertex operator V generates a state on the unit circle. The right

half, left half and midpoint of the string are labeled as viewed from infinity. Diagram b) gives the

same state in the z̃ = arctan(z) coordinate. The left and right sides of the figure are identified to

give a cylinder. The left/right half of the string now lies along the line <(z̃) = ±π/4. The midpoint

of the string is mapped to infinity.

simply glues the strips of world-sheet together that correspond to the two string states.

This is illustrated in figure 2.

Multiplying n strips of width π/2 will produce a strip of width nπ/2 and it is useful

to consider the class of all such states. When there are no operator insertions, a state

described by a strip of width nπ/2 is called a wedge state and is denoted |n + 1〉. These

states were first introduced in [24], and obey the algebra,

|n〉 ∗ |m〉 = |m + n − 1〉. (2.8)

The state |2〉 is just the original strip of width π/2 with no vertex operator inserted at the

origin and is, thus, the SL(2, R) invariant vacuum |0〉.

It turns out that taking the limit as the width of the strip tends to infinity leads to a

finite state; |∞〉 = limn→∞ |n〉. This state is known as the sliver [24] and as is a projector

under star multiplication;

|∞〉 ∗ |∞〉 = |∞〉. (2.9)

Notice that multiplying a state Λ by the wedge state of zero width, |1〉, leaves Λ invariant.

Hence, I = |1〉 is an identity of the star algebra;

Λ ∗ I = I ∗ Λ = Λ. (2.10)

A useful property of I is that, at least formally, for any operator O it obeys [25, 26]

O|I〉 = O?|I〉 = 1
2(O + O?)|I〉, (2.11)

where, in the notation of [27], O? denotes BPZ conjugation; O? = I◦O, where I(z) = −1/z.
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Figure 2: A pictorial description of the star product. Given two states |Ṽ1〉 and |Ṽ2〉 generated by

inserting vertex operators Ṽ1 and Ṽ2 in the z̃ coordinate, the star product, |Ṽ1〉 ∗ |Ṽ2〉, is computed

by gluing the right side of the |Ṽ1〉 state to the left side of the |Ṽ2〉 state. This gives a cylinder of

width 3π/2.

2.2 Some important operators

In general, each of the familiar operators in the z̃ coordinate can be pulled back into the

z coordinate using f−1(z̃) = tan(z̃). We will occasionally denote such an operator using a

tilde; e.g. c̃(z̃) = f−1 ◦ c(z). It is also useful to make the following definitions:

L0 = f−1 ◦ L0, B0 = f−1 ◦ b0, K1 = f−1 ◦ L−1, B1 = f−1 ◦ b−1. (2.12)

Just as L0 gave the mass level of fields in the z coordinate, L0 is the analogous level in the

z̃ coordinates. Similarly, while the standard gauge fixing condition in the z-coordinate was

b0Φ = 0, in the z̃-coordinate, one uses B0Φ = 0.

Explicit mode expansions of L0 and B0 are given by

L0 = L0 + 2
3L2 −

2
15L4 + · · · , (2.13)

B0 = b0 + 2
3b2 −

2
15b4 + · · · . (2.14)

Note that while L0 and b0 are BPZ dual to themselves, their script cousins are not and we

also have operators L?
0 and B?

0, which are given by L?
n = (−1)nL−n and b?

n = (−1)nb−n.

These obey the commutation relations,2

[L0,L
?
0] = L0 + L?

0, (2.15)

as well as

[L0,B0] = [L?
0,B

?
0 ] = 0, [L?

0,B0] = −B0 − B?
0, [L0,B

?
0] = B0 + B?

0. (2.16)

2These commutation relations are an important property of the conformal frame of the sliver. Re-

cently [27], it has been shown that the conformal frames of other projectors, known as special projectors,

lead to similar algebras; [L0,L
?
0] = s(L0 + L?

0). These special projectors have many similarities with the

sliver and can be used to solve the ghostnumber zero equations of motion [28, 27].
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An important property of L0 is that the wedge states can be represented in the form [29,

30, 24, 31]

|r〉 = U?
r |0〉, (2.17)

where Ur = (2/r)L0 . The operators Ur and U?
s obey the important relation [31],

UrU
?
s = U?

2+ 2
r
(s−2)

U2+ 2
s
(r−2), (2.18)

which can be used to derive (2.15).

The operators K1 and B1 take a very simply form,

K1 = L1 + L−1, B1 = b1 + b−1. (2.19)

These operators were first studied in [24], where it was shown that they are derivations of

the star algebra;

K1(Φ1 ∗ Φ2) = (K1Φ1) ∗ Φ2 + Φ1 ∗ (K1Φ2). (2.20)

B1(Φ1 ∗ Φ2) = (B1Φ1) ∗ Φ2 + (−1)gh(Φ1)Φ1 ∗ (B1Φ2). (2.21)

They also annihilate the wedge states;

K1|r〉 = B1|r〉 = 0. (2.22)

In the z̃ coordinates they take the form,

K1 =

∮
dz̃ T (z̃), B1 =

∮
dz̃ b(z̃). (2.23)

It is also useful to define the “left” and “right” parts of these operators, which are given

by taking only the left or right parts – as viewed from infinity — of the contour integral;

KL,R
1 =

∮

γL,R

dz̃ T (z̃), BL,R
1 =

∮

γL,R

dz̃ b(z̃). (2.24)

In the z̃ coordinates, the contours, γL,R, are given by the vertical lines on the right and

left of the strip. Note that, KL
1 + KR

1 = K1 and BL
1 + BR

1 = B1. Also,

KL
1 (Φ1 ∗ Φ2) = (KL

1 Φ1) ∗ Φ2, BL
1 (Φ1 ∗ Φ2) = (BL

1 Φ1) ∗ Φ2, (2.25)

KR
1 (Φ1 ∗ Φ2) = Φ1 ∗ (KR

1 Φ2), BR
1 (Φ1 ∗ Φ2) = (−1)gh(Φ1)Φ1 ∗ (BR

1 Φ2). (2.26)

An important property of the operators KL,R
1 is that they act as a derivative with

respect to the width of the state. This follows from (2.24). Since the KL,R are just

integrals of T in the z̃ coordinate and
∫

T (z̃) is the world-sheet Hamiltonian, εKR,L can

be thought of as adding/subtracting an infinitesimal strip of with ε from the right/left of

the world-sheet. This gives the useful identity,

∂n|n〉 = ±π
2KR,L

1 |n〉, (2.27)
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which can be integrated to give

|n〉 = e±
π
2
(n−2)KR,L

1 |0〉. (2.28)

The operators KL,R
1 , L0 and L?

0, as well as BL,R
1 , B0 and B?

0 are related through the

identities,

KL
1 − KR

1 = 2
π (L0 + L?

0), BL
1 − BR

1 = 2
π (B0 + B?

0), (2.29)

which follow from the definitions of these operators. Using (2.29), we can rewrite (2.28) as

|n〉 = e
(2−n)

2
(L0+L?

0)|0〉. (2.30)

This expression can be related to (2.17) using the identity,

e
(2−n)

2
(L0+L?

0) = U?
nUn. (2.31)

A more general collection of such identities can be found in [31 – 33, 16].

3. The exact tachyon vacuum solution

In this section, we review the exact tachyon vacuum state found in [16]. Define

ψn = 2
π c1|0〉 ∗ BL

1 |n〉 ∗ c1|0〉. (3.1)

Then the tachyon vacuum is given by3

Ψ = lim
N→∞

(
ψN −

N∑

n=0

∂nψn

)
. (3.2)

Formally, the ψN piece vanishes in level truncation as N → ∞, but it gives finite contribu-

tions to the energy and is required for Ψ to satisfy the equations of motion when contracted

with itself [17, 18];

〈Ψ|QBΨ〉 + 〈Ψ|Ψ ∗ Ψ〉 = 0. (3.3)

We will see that this term is also required to give a complete proof that the cohomology

of QΨ vanishes.

The solution satisfies the gauge fixing condition,

B0Ψ = 0, (3.4)

which as alluded to earlier, is the analogue of Feynman-Siegel gauge fixing in the z̃-

coordinate.

The states −∂nψn can be written using (2.27) as

−∂nψn = c1|0〉 ∗ BL
1 KL

1 |n〉 ∗ c1|0〉. (3.5)

These states take a simple form in the z̃ coordinate, as illustrated in figure 3.

3The term −∂nψn for n = 0 can be defined by carefully taking the limit. Explicitly, one finds QBBL
1 c1|0〉.
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z̃

c c

γ1 γ2

0 π
2 π nπ

2
(n+1)π

2

Figure 3: The state −∂nψn is given by a strip of width π

2
(n + 1) with two insertions of c(z̃) as

well as two contour integrals of T (z̃) and b(z̃) along the curves γ1 and γ2.

4. Proof that QΨ has no cohomology

Having defined Ψ, we can now turn to the main aim of this paper, to prove that QΨ has

vanishing cohomology so that there are no on-shell perturbative states around the tachyon

vacuum. As discussed in the introduction, we can do this using a trick, which we state as

a simple lemma:

Lemma: The cohomology of a BRST operator QΨ vanishes if and only if there exists a

string field A such that QΨA = I.4

Proof: First, suppose that QΨ has no cohomology. Consider QΨI = QBI +Ψ∗I −I ∗Ψ =

QBI. Since, as was first shown in [25, 26], QBI = 0, it follows that QΨI = 0. Since I is

QΨ-closed and QΨ has no cohomology, there must exist some A such that I = QΨA.

Now suppose, instead, that we have a state A such that QΨA = I. Suppose we also

have some QΨ-closed state Λ such that QΨΛ = 0. Then

QΨ(A ∗ Λ) = (QΨA) ∗ Λ = I ∗ Λ = Λ, (4.1)

so that Λ is QΨ-exact. Since any QΨ-closed state is also QΨ-exact, it follows that QΨ has

no cohomology.

Such an operator A is known in the math literature as a homotopy operator. Note

that the existence of A proves that the cohomology of QΨ vanishes at all ghost numbers,

not just ghost number zero as required by Sen’s conjectures.5

4This proof assumes that I behaves as an identity on the space of states where we are computing the

cohomology of QΨ. It is known that there are anomalies associated with the identity [24]; however, we

assume that for the appropriate class of states Λ that I ∗Λ = Λ ∗ I = Λ. This property holds, for example,

for all wedge states with a finite number of insertions.
5This seems to contradict the numerical results of [14]. Nonzero cohomology at other ghost numbers

has also been found for the so-called universal solution [34] in [35].
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4.1 Finding the state A

We now describe how to find an A satisfying,

QΨA = QBA + Ψ ∗ A + A ∗ Ψ = I. (4.2)

Although (4.2) is a linear equation for A, a blind search for a solution could be very difficult.

Fortunately, for the Feynman Siegel gauge solution, (4.2) was solved numerically in [15]

and we can use the results found there to guess a solution.

Surprisingly, it was found in [15] that, in Feynman-Siegel gauge, A takes the approxi-

mate form,

AFS ∼
1

L0
b0I. (4.3)

Curiously, this form of AFS is the state one would write down if one was trying to show

that, in the perturbative vacuum, QB had vanishing cohomology. Indeed one has

QBAFS = I − |0〉, (4.4)

so that one finds the identity state minus the one piece of the identity that is in the

cohomology of QB .

A natural guess for the B0-gauge solution is to take the same form for A, but with b0

and L0 replaced by their counterparts in the z̃ coordinate, B0 and L0;
6

A =
1

L0
B0I. (4.5)

It turns out that this A can be written in a nicer form, as an integral over wedge states

with insertions. Using (2.11), we have

A =
1

2L0
(B0 + B?

0)I. (4.6)

Since (B0 + B?
0) raises the L0-level by one, we may rewrite (4.6) as

A = 1
2(B0 + B?

0)
1

L0 + 1
I. (4.7)

This can be further simplified by writing

1

L0 + 1
=

∫ 1

0
zL0dz =

∫ 1

0
dz U2/z . (4.8)

Using (2.18), we have

U2/zI = U2/zU
?
1 |0〉 = U?

2−z|0〉 = |2 − z〉, (4.9)

6Note that B0 annihilates the only component of I that is in the kernel of L0. It follows that the action

of L−1
0 on B0I is well defined.
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z̃

γ

︸ ︷︷ ︸
π(r−1)/2

A = π
2

∫ 2

1
dr

Figure 4: The state A can be represented as a sum over wedge states |r〉. The only operator

insertion is a single contour integral of b(z̃) along the curve γ.

which yields7

A = 1
2(B0 + B?

0)

∫ 1

0
dz |2 − z〉 = 1

2(B0 + B?
0)

∫ 2

1
dr |r〉. (4.11)

Using (2.29) and (2.22) this becomes

A = π
2 BL

1

∫ 2

1
dr |r〉. (4.12)

This state has a simple geometric interpretation, as shown in figure 4.

4.2 Computation of QΨA

The first term in QΨA is just QBA. This is given by

QBA = π
2 KL

1

∫ 2

1
|r〉 = −

∫ 2

1
dr ∂r|r〉 = I − |0〉, (4.13)

which reproduces the Feynman-Siegel gauge result, (4.4).

Next we must compute the star-products Ψ∗A and A∗Ψ. Because the tachyon vacuum

solution is twist invariant, these two computations are related to each other by a twist.

Hence, we need to compute just one of them, Ψ ∗ A.

Since Ψ = ψN −
∑n

m=0 ∂nψn, we begin by evaluating ψn ∗ A. Using (3.5), we have

ψn ∗ A =

∫ 2

1
dr c1|0〉 ∗ BL

1 |n〉 ∗ c1|0〉 ∗ BL
1 |r〉, (4.14)

7This result can also be found directly in the L0-level expansion;

A =
1

2L0
(B0 + B?

0)
∞X

n=0

1

2nn!
(L0 + L?

0)
n|0〉 =

1

2

∞X

n=0

(B0 + B?
0)

1

2n(n + 1)!
(L0 + L?

0)
n|0〉

= 1
2
(B0 + B?

0)
e

1

2
(L0+L

?

0
) − 1

(L0 + L?
0)/2

|0〉 = 1
2
(B0 + B?

0)

Z 2

1

dr e
2−r

2
(L0+L

?

0
)|0〉 = 1

2
(B0 + B?

0)

Z 2

1

dr |r〉. (4.10)
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which we can rewrite using (2.25) as

∫ 2

1
dr c1|0〉 ∗ BL

1 BR
1 (|n〉 ∗ c1|0〉 ∗ |r〉). (4.15)

Now, using BL
1 BR

1 = BL
1 (B1 − BL

1 ) = BL
1 B1 this becomes

∫ 2

1
dr c1|0〉 ∗ BL

1 B1(|n〉 ∗ c1|0〉 ∗ |r〉) =

∫ 2

1
dr c1|0〉 ∗ BL

1 (|n〉 ∗ |0〉 ∗ |r〉), (4.16)

where we have used the derivation property (2.20) of B1 as well as (2.22). It follows that

ψn ∗ A =

∫ 2

1
dr BR

1 (c1|0〉 ∗ |n + r〉). (4.17)

Similarly, one can compute A ∗ ψn either by repeating the above computation or by ex-

ploiting twist symmetry. Either way, one finds

A ∗ ψn =

∫ 2

1
dr BL

1 (|r + n〉 ∗ c1|0〉). (4.18)

Now consider −
∑N

n=0 ∂nψn ∗ A. Since n and r appear only in the combination n + r, we

can replace the derivative ∂n with ∂r. This gives

−

N∑

n=0

∂nψn ∗ A = −

N∑

n=0

∫ 2

1
dr BR

1 (c1|0〉 ∗ ∂r|n + r〉) =

N∑

n=0

BR
1 (c1|0〉 ∗ {|n + 1〉 − |n + 2〉}).

(4.19)

Notice that the sum can now be trivially performed since

N∑

n=0

|n + 1〉 − |n + 2〉 = I − |N + 2〉. (4.20)

Hence, we find

−

N∑

n=0

∂nψn ∗ A = BR
1 c1|0〉 − BR

1 (c1|0〉 ∗ |N + 2〉). (4.21)

Similarly, one can compute

−A ∗

N∑

n=0

∂nψn = BL
1 c1|0〉 − BL

1 (|N + 2〉 ∗ c1|0〉). (4.22)

Using (4.17), (4.18), (4.21) and (4.22), we find, in total, that

Ψ ∗ A + A ∗ Ψ = |0〉 − Σ, (4.23)

where the state Σ is given by

Σ = BR
1

{
c1|0〉 ∗

(
|N + 2〉−

∫ 2

1
dr |N+r〉

)}
+BL

1

{(
|N+2〉−

∫ 2

1
dr |N+r〉

)
∗ c1|0〉

}
.

(4.24)
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Now, as N → ∞, the state |N〉 limits to the sliver so that |N + 2〉 −
∫ 2
1 dr |N + r〉 → 0 as

N → ∞. In fact, it is straightforward to check that, in the level expansion, it goes to zero

as O(N−3). Hence, when we remove the regulator we find

Ψ ∗ A + A ∗ Ψ = |0〉. (4.25)

Note that it was important to include the ψN piece in Ψ to cancel out the surface terms

in the sums (4.21) and (4.22). Combining (4.25) with (4.13), we find the desired result;

QΨA = QBA + Ψ ∗ A + A ∗ Ψ = I. (4.26)

This proves that the cohomology of QΨ is empty.

4.3 Comparison with vacuum string field theory

It is interesting to compare our results with the results of vacuum string field theory

(VSFT) [36, 37]. In VSFT, the BRST operator around the tachyon vacuum is taken, by

ansatz, to be a simple pure ghost operator. For example, one of the early choices was

the zero mode of the c-ghost, c0. To show that c0 has empty cohomology, one notes that

{c0, b0} = 1, so that b0 plays the role of our string field, A.

This analogy can be made a little closer. Just as b2
0 = 0, it happens that A ∗ A = 0.

This property is easy to see from the geometric form of A in figure 4. Moreover, just as b0

is a Hermitian operator, one can also construct a Hermitian operator Â defined by

ÂΦ = A ∗ Φ + (−1)gh(Φ)Φ ∗ A, (4.27)

which satisfies Â2 = 0 and {QΨ, Â} = 1, as well as the Hermiticity property, 〈Φ1|ÂΦ2〉 =

〈ÂΦ1|Φ2〉. Since VSFT is thought to be a singular limit of ordinary OSFT, in which the

BRST operator becomes a c-ghost operator inserted at the midpoint [38], it would be

interesting to see whether Â becomes a simple operator formed out of just the b-ghost in

this limit.

4.4 Brane decay in the presence of other branes

In this subsection, we show that one can extend our cohomology arguments to the case

where we include other branes that have not decayed. Consider OSFT around a 2 brane

background, which we describe by adding Chan-Paton indices to our string fields;

φ =

(
Φ11 Φ12

Φ21 Φ22

)
, (4.28)

where φ† = φ. To decay one of the branes, we may turn on

ψ =

(
Ψ 0

0 0

)
. (4.29)

The BRST operator Qψ acts as

QBφ + [ψ, φ] =

(
QBΦ11 + [Ψ,Φ11] QBΦ12 + Ψ ∗ Φ12

QBΦ21 − (−1)gh(Φ21)Φ21 ∗ Ψ QBΦ22

)
. (4.30)
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Since we have decayed the first brane, we expect that there are no on-shell 11, 12 or 21

strings. This implies that the three BRST-operators,

Q11Φ = QBΦ + [Ψ,Φ], Q12Φ = QBΦ + Ψ ∗ Φ, and Q21Φ = QBΦ − (−1)gh(Φ)Φ ∗ Ψ,

(4.31)

should all have vanishing cohomology. Since Q11 = QΨ, there is nothing new to show. For

Q12 and Q21, our old argument still works as long as we are careful about left multiplication

versus right multiplication. Suppose that Q12Φ = 0. Then it is easy to check that

Q12(A ∗ Φ) = (QΨA) ∗ Φ = Φ. (4.32)

Thus, as we expect, every closed state is exact. Similarly, if Q21Φ = 0, we have

Q21(−Φ ∗ A) = Φ ∗ (QΨA) = Φ. (4.33)

Putting the A on the left of Φ would not work. Hence, we have shown that the only

open strings that remain in the spectrum are those that live on the undecayed brane.

This argument generalizes to the case of n decayed branes and m undecayed branes in the

expected way.

5. Pure-gauge-like form

One of the curious features of the analytic tachyon vacuum is that it is very close to being

pure gauge. Indeed, it was found by Okawa [17] that if one ignores the ψN term — which

one can in the L0 basis8 – the full solution can be written as the limit, λ → 1, of the state,

Ψλ = Uλ ∗ QBVλ, (5.1)

where9

Uλ = 1 − λΦ, Vλ =
1

1 − λΦ
(5.3)

and

Φ = BL
1 c1|0〉. (5.4)

When λ < 1 the states Uλ and Vλ are well defined in the level-expansion and the state Ψλ

is a true pure-gauge solution with zero energy.

Obviously, the tachyon solution itself, cannot be a pure-gauge solution related by a

continuous deformation to the vacuum for two reasons. First, the energy of such a solution

would have to be zero in contradiction with the now proven Sen’s first conjecture. Second,

it would imply that the cohomology of the kinetic operator at the true vacuum would be

8Interestingly, in the L0 level truncation we find Ψλ = λ

1−λ
QΦ + · · · , where the dots stand for terms of

L0-level higher than 0. Hence, the λ → 1 limit does not exist in this basis.
9Vλ is defined by the Taylor series,

1

1 − λΦ
=

∞X

n=0

λnΦn; Φn = Φ ∗ Φ ∗ . . . ∗ Φ
| {z }

n

. (5.2)
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isomorphic to the cohomology of QB in contradiction with Sen’s third conjecture. It is

therefore interesting to understand how the solution ceases to be a pure gauge at λ = 1

and how Sen’s conjectures are rescued.

The basic property of the pure-gauge solutions is that

Uλ ∗ Vλ = Vλ ∗ Uλ = I. (5.5)

This allows one to define an isomorphism between the states in the perturbative vacuum

and their corresponding states in the pure-gauge vacuum;

φ → Fλ[φ] = Uλ ∗ φ ∗ Vλ, (5.6)

which has inverse, F−1
λ [φ] = Vλ ∗ φ ∗ Uλ.

This isomorphism relates the original BRST operator, QB, to the new BRST operator,

Qλ, around the pure-gauge vacuum;

Qλ(Fλ[φ]) = Fλ[QBφ]. (5.7)

It follows that the two operators have identical cohomology.

We can now ask how (5.5)–(5.7) break down when λ → 1. Clearly, since the right

hand side of (5.5) is independent of λ, we will find limλ→1 Uλ ∗ Vλ = limλ→1 Vλ ∗ Uλ = I.

However, the state Vλ by itself diverges in the L0 level-expansion, although it appears to

remain finite in the L0 expansion.

Similar divergences occur when we consider Fλ(φ) and its inverse. For concreteness,

take φ = cO|0〉, where O is a matter operator that satisfies

[L0,O] = hO. (5.8)

Following the rules of [16] we find

Fλ[φ] = cO(0)|0〉 +

∞∑

m=1

λmU?
m+2Um+2

{
1

2
Õ(x)(c̃(x) + c̃(−x)) +

1

2
Õ(y)(c̃(x) − c̃(y))

−
1

π
(B0 + B?)

(
Õ(x)c̃(x)c̃(−x) + Õ(y)(c̃(x) − c̃(y))c̃(−x)

)}
|0〉, (5.9)

where, for brevity, we have introduced x = π
4m and y = π

4 (m − 2). Using this form, it is

straightforward to work out the coefficients in the L0 basis

Fλ[φ] =
1

1 − λ
cO(0)|0〉+ (5.10)

+
λ

(1 − λ)2

[
−

1

2
(L0 + L?

0) c̃Õ(0) + (B0 + B?
0) c̃∂̃c̃Õ(0)+

+
π

4

(
(1 − λ)∂̃c̃Õ(0) + c̃∂̃Õ(0)

)]
|0〉 + · · · ,

where the dots stand for terms of higher L0-level. We see that, due to the presence of poles

at λ = 1, the state Fλ=1[φ] does not make sense in this basis. Note that one cannot rescale

– 14 –
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φλ by a positive power of 1 − λ to get a finite representative of the cohomology, since the

maximal order of the poles grows with level.

We find similar behavior when we compute F [φ] in the ordinary L0 level truncation.

Since such computations are more difficult, we have restricted ourselves to the case where

O is a weight one primary. This case is of particular interest, as any cohomology class of

QB has a representative of this form.

Computing the coefficient of Fλ[φ] in front of cO(0)|0〉, we find

1+

∞∑

m=1

λm m + 2

2

[
1

2
+

α

π

(
1−

(
sin α

sin 2α

)2
)
−

1

π
sin 2α+

1

2π

(
sin α

sin 2α

)2

(sin 4α−sin 2α)

]
,

(5.11)

where α = π/(m + 2). Since the summand behaves as

λm

[
m + 2

4
−

1

2
+

π2

12

1

(m + 2)2
+ · · ·

]
,

we see that, apart from the mild polylogarithmic singularities at λ = 1, which are present

also for the solution Ψλ itself, Fλ[φ] contains double and single poles and therefore the

limit limλ→1 Fλ[φ] does not exist.

So far in this discussion we have tried to show that elements of the cohomology of QB

are not mapped via F to elements of the cohomology of QΨ. However, it is also interesting

to ask why A cannot be pulled back to the perturbative vacuum to show that QB has no

cohomology. Hence, we compute

F−1(A) =
1

1 − Φ
∗ A ∗ (1 − Φ) (5.12)

=
π

2

∫ 2

1
dr (1 +

∞∑

n=1

BL
1 |n〉 ∗ c1|0〉) ∗ BL

1 |r〉 ∗ (1 − BL
1 c1|0〉)

=
π

2

∞∑

n=1

∫ 2

1
dr BL

1 |n + r − 1〉.

This simplifies to

F−1(A) = π
2

∫ ∞

1
dr BL

1 |r〉, (5.13)

which should be thought of as the “A” of the perturbative vacuum. We can now act on

this state with QB;

QB(F−1(A)) = −

∫ ∞

1
dr ∂r|r〉 = I − |∞〉. (5.14)

Happily, we do not find just the identity on the right hand side, so the cohomology of

QB need not vanish.10 Equation (5.14) has a nice interpretation in terms of half strings.

10Formally one could write QBF−1(A) = F−1(QΨA) = F−1(I) = Vλ=1 ∗ Uλ=1. Using (5.14), this would

imply V ∗U = I − |∞〉 suggesting that V and U are a nontrivial pair of partial isometries as first proposed

in [39]. On the other hand a direct computation seems to yield V ∗U = I in the strict λ → 1 limit, in both

L0 and L0 level truncation. It would be nice to understand this anomaly more deeply.
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Consider a state φ which is QB-closed, but whose left half has no overlap with the right

half of |∞〉. In other words, |∞〉∗φ = 0. It follows that φ is QB-exact. To see this, consider

QB(F−1(A) ∗ φ) = (I − |∞〉) ∗ φ = φ. (5.15)

A similar result holds for states whose right half has no overlap with the left half of |∞〉.

This implies that the entire cohomology of QB should be found on states whose left and

right halves are given by the left and right halves of |∞〉. Such a set of states is easy to find.

For example, at ghost number 0, the cohomology of QB is represented by just |∞〉 itself.

At ghost number 1, which is the interesting case, the cohomology of QB has representatives

given by weight (0, 0) primaries of the form cJ , where J is a weight one matter primary.

Inserting these operators at the midpoint of |∞〉 gives a set of ghost number 1 states in

the cohomology of QB with left and right halves given by the left and right halves of |∞〉.

6. Discussion

In this paper we have shown that, formally, the operator A = L−1
0 B0|I〉 trivializes the

identity and can be thus used to prove Sen’s third conjecture. It has been stressed to us

independently by a number of colleagues that for a more rigorous proof of the conjecture,

one should specify carefully the space of states. Unfortunately, endowing the string field

star algebra with a proper Hilbert space structure is a notoriously difficult problem.

One can, however, find various sub-algebras of the star algebra for which everything is

under control. One possibility is to start with the finite-dimensional space of local operators

of dimension h with h < hmax (in fact, this space will only be finite-dimensional in the

Euclidean compactified version). We can then create the algebra of wedge states with

insertions by allowing a finite number of insertions of these operators on the boundary

inside wedge states |n〉 with n ∈ [1,∞) (we can also allow for one very specific insertion

B̂). Such a space is closed under star-multiplication and under the action of the BRST

charge and is free from associativity anomalies and divergences that may appear when we

multiply more general states.

Unfortunately, this space is not large enough to include the tachyon vacuum, which is

an infinite sum of wedge states with insertions. It seems natural, therefore, that the space

of allowed string fields should include some infinite superpositions of wedge states with

insertions. Rather pragmatically, we restrict to those superpositions that lead to finite

contractions with Fock states, but this is not enough to ensure that the star-algebra will

be well-behaved. It seems, for example, that if the contribution of states with n → ∞ is

not mild enough, we may run into associativity anomalies.

Another common concern with our proof of vanishing cohomology is the use of the

identity string field. We would like to point out that the action of identity on the space

of wedge states with insertions is absolutely under control, both geometrically and alge-

braically. Some examples were tested also in level truncation in [31]. The well known

anomalies (see e.g. [24]) appear when one acts with non-local operators such as c0 on the

identity which, when decomposed formally into our basis, leads to states with midpoint

insertions [31]. We believe that such states should not be allowed. Furthermore, our proof
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of Sen’s conjecture requires that A ∗ φ is well-defined for all states φ in the allowed space

of states. As should be clear from its construction, A ? φ will be well-defined when φ is

a wedge state with insertions and we propose that it will be well-defined on the enlarged

class of allowed string fields as well.

Note added in proof: after the submission of this paper, we received a preprint [40] that

searches numerically for a cohomology at the tachyon vacuum in Siegel gauge. Somewhat

surprisingly the paper confirms, with much better accuracy the previous results of [14],

that there is a nonzero cohomology at non-standard ghost numbers. We offer two possible

resolutions: one is that the elements of the non-standard cohomology do not fall into the

space of allowed string fields as they may involve midpoint insertions. A more radical reso-

lution11 is that the cohomology at ghost numbers other than one is gauge dependent. The

cohomology at ghost number zero, for instance, describes global symmetries of the theory,

but, if the theory does not posses any propagating degrees of freedom, the global symmetry

does not have anything to act on, and is thus not observable and, hence, unphysical.
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