5 research outputs found

    Learning solution of nonlinear constitutive material models using physics-informed neural networks: COMM-PINN

    Full text link
    We applied physics-informed neural networks to solve the constitutive relations for nonlinear, path-dependent material behavior. As a result, the trained network not only satisfies all thermodynamic constraints but also instantly provides information about the current material state (i.e., free energy, stress, and the evolution of internal variables) under any given loading scenario without requiring initial data. One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models. Additionally, strategies are provided to reduce the required order of derivation for obtaining the tangent operator. The trained model can be directly used in any finite element package (or other numerical methods) as a user-defined material model. However, challenges remain in the proper definition of collocation points and in integrating several non-equality constraints that become active or non-active simultaneously. We tested this methodology on rate-independent processes such as the classical von Mises plasticity model with a nonlinear hardening law, as well as local damage models for interface cracking behavior with a nonlinear softening law. Finally, we discuss the potential and remaining challenges for future developments of this new approach

    Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains

    Full text link
    Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems by defining loss functions of neural networks based on governing equations, boundary conditions, and initial conditions. Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy, especially when there are heterogeneity and variable jumps in the domain. This new approach is called the mixed formulation for PINNs, which takes ideas from the mixed finite element method. In this method, the PDE is reformulated as a system of equations where the primary unknowns are the fluxes or gradients of the solution, and the secondary unknowns are the solution itself. In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations. Additionally, we discuss both sequential and fully coupled unsupervised training and compare their accuracy and computational cost. To improve the accuracy of the network, we incorporate hard boundary constraints to ensure valid predictions. We then investigate how different optimizers and architectures affect accuracy and efficiency. Finally, we introduce a simple approach for parametric learning that is similar to transfer learning. This approach combines data and physics to address the limitations of PINNs regarding computational cost and improves the network's ability to predict the response of the system for unseen cases. The outcomes of this work will be useful for many other engineering applications where deep learning is employed on multiple coupled systems of equations for fast and reliable computations

    A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method

    Full text link
    Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems. The main contribution of the current work is to promote using the spatial gradient of the primary variable as an output from separated neural networks. Later on, the strong form which has a higher order of derivatives is applied to the spatial gradients of the primary variable as the physical constraint. In addition, the so-called energy form of the problem is applied to the primary variable as an additional constraint for training. The proposed approach only required up to first-order derivatives to construct the physical loss functions. We discuss why this point is beneficial through various comparisons between different models. The mixed formulation-based PINNs and FE methods share some similarities. While the former minimizes the PDE and its energy form at given collocation points utilizing a complex nonlinear interpolation through a neural network, the latter does the same at element nodes with the help of shape functions. We focus on heterogeneous solids to show the capability of deep learning for predicting the solution in a complex environment under different boundary conditions. The performance of the proposed PINN model is checked against the solution from FEM on two prototype problems: elasticity and the Poisson equation (steady-state diffusion problem). We concluded that by properly designing the network architecture in PINN, the deep learning model has the potential to solve the unknowns in a heterogeneous domain without any available initial data from other sources. Finally, discussions are provided on the combination of PINN and FEM for a fast and accurate design of composite materials in future developments

    Physics-Informed Neural Networks Applied to Catastrophic Creeping Landslides

    No full text
    corecore