144 research outputs found

    A Genetic Polymorphism (rs17251221) in the Calcium-Sensing Receptor Gene (CASR) Is Associated with Stone Multiplicity in Calcium Nephrolithiasis

    Get PDF
    Calcium nephrolithiasis is one of the most common causes of renal stones. While the prevalence of this disease has increased steadily over the last 3 decades, its pathogenesis is still unclear. Previous studies have indicated that a genetic polymorphism (rs17251221) in the calcium-sensing receptor gene (CASR) is associated with the total serum calcium levels. In this study, we collected DNA samples from 480 Taiwanese subjects (189 calcium nephrolithiasis patients and 291 controls) for genotyping the CASR gene. Our results indicated no significant association between the CASR polymorphism (rs17251221) and the susceptibility of calcium nephrolithiasis. However, we found a significant association between rs17251221 and stone multiplicity. The risk of stone multiplicity was higher in patients with the GG+GA genotype than in those with the AA genotype (chi-square test:P = 0.008;odds ratio  =  4.79;95% confidence interval, 1.44–15.92;Yates' correction for chi-square test:P = 0.013). In conclusion, our results provide evidence supporting the genetic effects of CASR on the pathogenesis of calcium nephrolithiasis

    The role of salt abuse on risk for hypercalciuria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated sodium excretion in urine resulting from excessive sodium intake can lead to hypercalciuria and contribute to the formation of urinary stones. The aim of this study was to evaluate salt intake in patients with urinary lithiasis and idiopathic hypercalciuria (IH).</p> <p>Methods</p> <p>Between August 2007 and June 2008, 105 lithiasic patients were distributed into 2 groups: Group 1 (n = 55): patients with IH (urinary calcium excretion > 250 mg in women and 300 mg in men with normal serum calcium); Group 2 (n = 50): normocalciuric patients (NC). Inclusion criteria were: age over 18 years, normal renal function (creatinine clearance ≥ 60 ml/min), absent proteinuria and negative urinary culture. Pregnant women, patients with intestinal pathologies, chronic diarrhea or using corticoids were excluded. The protocol of metabolic investigation was based on non-consecutive collection of two 24-hour samples for dosages of: calcium, sodium, uric acid, citrate, oxalate, magnesium and urinary volume. Food intake was evaluated by the three-day dietary record quantitative method, and the Body Mass Index (BMI) was calculated and classified according to the World Health Organization (WHO). Sodium intake was evaluated based on 24-hour urinary sodium excretion.</p> <p>Results</p> <p>The distribution in both groups as regards mean age (42.11 ± 10.61 vs. 46.14 ± 11.52), weight (77.14 ± 16.03 vs. 75.99 ± 15.80), height (1.64 ± 0.10 vs. 1.64 <b>± plusorminus </b>0.08) and BMI (28.78 ± 5.81 vs. 28.07 ± 5.27) was homogeneous. Urinary excretion of calcium (433.33 ± 141.92 vs. 188.93 ± 53.09), sodium (280.08 ± 100.94 vs. 200.44.93 ± 65.81), uric acid (880.63 ± 281.50 vs. 646.74 ± 182.76) and magnesium (88.78 ± 37.53 vs. 64.34 ± 31.84) was significantly higher in the IH group (p < 0.05). There was no statistical difference in calcium intake between the groups, and there was significantly higher salt intake in patients with IH than in NC.</p> <p>Conclusions</p> <p>This study showed that salt intake was higher in patients with IH as compared to NC.</p

    Genetic causes of hypercalciuric nephrolithiasis

    Get PDF
    Renal stone disease (nephrolithiasis) affects 3–5% of the population and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in over 35% of patients and may occur as a monogenic disorder that is more likely to manifest itself in childhood. Studies of these monogenic forms of hypercalciuric nephrolithiasis in humans, e.g. Bartter syndrome, Dent’s disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal disease, is caused by mutations of the bumetanide-sensitive Na–K–Cl (NKCC2) co-transporter, the renal outer-medullary potassium (ROMK) channel, the voltage-gated chloride channel, CLC-Kb, the CLC-Kb beta subunit, barttin, or the calcium-sensing receptor (CaSR). Dent’s disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria and nephrolithiasis, is due to mutations of the chloride/proton antiporter 5, CLC-5; ADHH is associated with activating mutations of the CaSR, which is a G-protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium–phosphate co-transporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to hypercalciuria and nephrolithiasis
    • …
    corecore