31 research outputs found

    Embryonic diapause in humans: time to consider?

    No full text

    Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid.

    No full text
    Much emphasis is currently given to the use of Interspecific Somatic Cell Nuclear Transfer (ISCNT) as a potential salvage tool for endangered animals. In this short review we present a survey on all data published so far on ISCNT, including abstract communication in international meetings. From the analysis of these data it appears that the results obtained are very preliminary and often confusing on the real stage of the embryonic development obtained. Moreover, the acronym ISCNT is improperly used because in many reports the nuclei and oocyte donor are not within the same species, but belong to different order and sometimes taxa, therefore, we classified all the ISCNT reports by allocating cell and oocyte donors to their respective order/species/class. The efficiency of cloning is low in all species owing to incomplete nuclear reprogramming of differentiated cells under the current procedures. ISCNT, however, poses additional hurdles which are rarely addressed in previously published work, and on which we focus in this review: mt/genomic DNA compatibility; embryonic genome activation of the donor nucleus by the recipient oocyte; availability of suitable foster mothers for ISCNT embryos. All these issues are discussed here, and possible solutions for the successful application of somatic cell nuclear transfer to endangered animals are also put forth.[...

    Embryonic diapause is conserved across mammals.

    No full text
    Embryonic diapause (ED) is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus). If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries) could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine blastocysts were able to resume growth in vitro and, after transfer to surrogate ewe recipients, to develop into normal lambs. The finding that non-diapausing ovine embryos can enter into diapause implies that this phenomenon is phylogenetically conserved and not secondarily acquired by embryos of diapausing species. Our study questions the current model of independent evolution of ED in different mammalian orders.[...

    Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Get PDF
    The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT
    corecore