47 research outputs found

    Fractal Structure of Loop Quantum Gravity

    Full text link
    In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.Comment: 5 pages, 5 figure

    A semiclassical tetrahedron

    Get PDF
    We construct a macroscopic semiclassical state state for a quantum tetrahedron. The expectation values of the geometrical operators representing the volume, areas and dihedral angles are peaked around assigned classical values, with vanishing relative uncertainties.Comment: 10 pages; v2 revised versio

    Gravitational collapse in loop quantum gravity

    Get PDF
    In this paper we study the gravitational collapse in loop quantum gravity. We consider the space-time region inside the Schwarzschild black hole event horizon and we divide this region in two parts, the first one where the matter (dust matter) is localized and the other (outside) where the metric is Kantowski-Sachs type. We calculate the state solving Hamiltonian constraint and we obtain a set of three difference equations that give a regular and natural evolution beyond the classical singularity point in "r=0" localized.Comment: 16 pages, 2 figure

    On the perturbative expansion of a quantum field theory around a topological sector

    Full text link
    The idea of treating general relativistic theories in a perturbative expansion around a topological theory has been recently put forward in the quantum gravity literature. Here we investigate the viability of this idea, by applying it to conventional Yang--Mills theory on flat spacetime. We find that the expansion around the topological theory coincides with the usual expansion around the abelian theory, though the equivalence is non-trivial. In this context, the technique appears therefore to be viable, but not to bring particularly new insights. Some implications for gravity are discussed.Comment: 7 page

    Background independence in a nutshell

    Full text link
    We study how physical information can be extracted from a background independent quantum system. We use an extremely simple `minimalist' system that models a finite region of 3d euclidean quantum spacetime with a single equilateral tetrahedron. We show that the physical information can be expressed as a boundary amplitude. We illustrate how the notions of "evolution" in a boundary proper-time and "vacuum" can be extracted from the background independent dynamics.Comment: 19 pages, 19 figure

    Physical boundary state for the quantum tetrahedron

    Full text link
    We consider stability under evolution as a criterion to select a physical boundary state for the spinfoam formalism. As an example, we apply it to the simplest spinfoam defined by a single quantum tetrahedron and solve the associated eigenvalue problem at leading order in the large spin limit. We show that this fixes uniquely the free parameters entering the boundary state. Remarkably, the state obtained this way gives a correlation between edges which runs at leading order with the inverse distance between the edges, in agreement with the linearized continuum theory. Finally, we give an argument why this correlator represents the propagation of a pure gauge, consistently with the absence of physical degrees of freedom in 3d general relativity.Comment: 20 pages, 6 figure

    Numerical indications on the semiclassical limit of the flipped vertex

    Full text link
    We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced "flipped" vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.Comment: 4 pages, 8 figure

    Loop quantum black hole

    Full text link
    In this paper we consider the Kantowski-Sachs space-time in Ashtekar variables and the quantization of this space-time starting from the complete loop quantum gravity theory. The Kanthowski-Sachs space-time coincides with the Schwarzschild black hole solution inside the horizon. By studying this model we can obtain information about the black hole singularity and about the dynamics across the point r=0. We studied this space-time in ADM variables in two previous papers where we showed that the classical black hole singularity disappears in quantum theory. In this work we study the same model in Ashtekar variables and we obtain a regular space-time inside the horizon region and that the dynamics can be extend further the classical singularity.Comment: 12 pages, latex. We introduce and we calculate the spectrum of the operator 1/|E

    Spinning Loop Black Holes

    Full text link
    In this paper we construct four Kerr-like spacetimes starting from the loop black hole Schwarzschild solutions (LBH) and applying the Newman-Janis transformation. In previous papers the Schwarzschild LBH was obtained replacing the Ashtekar connection with holonomies on a particular graph in a minisuperspace approximation which describes the black hole interior. Starting from this solution, we use a Newman-Janis transformation and we specialize to two different and natural complexifications inspired from the complexifications of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that the space-times obtained in this way are singularity free and thus there are no naked singularities. We show that the transformation move, if any, the causality violating regions of the Kerr metric far from r=0. We study the space-time structure with particular attention to the horizons shape. We conclude the paper with a discussion on a regular Reissner-Nordstrom black hole derived from the Schwarzschild LBH and then applying again the Newmann-Janis transformation.Comment: 18 pages, 18 figure
    corecore