41 research outputs found
Optimal prediction for moment models: Crescendo diffusion and reordered equations
A direct numerical solution of the radiative transfer equation or any kinetic
equation is typically expensive, since the radiative intensity depends on time,
space and direction. An expansion in the direction variables yields an
equivalent system of infinitely many moments. A fundamental problem is how to
truncate the system. Various closures have been presented in the literature. We
want to study moment closure generally within the framework of optimal
prediction, a strategy to approximate the mean solution of a large system by a
smaller system, for radiation moment systems. We apply this strategy to
radiative transfer and show that several closures can be re-derived within this
framework, e.g. , diffusion, and diffusion correction closures. In
addition, the formalism gives rise to new parabolic systems, the reordered
equations, that are similar to the simplified equations.
Furthermore, we propose a modification to existing closures. Although simple
and with no extra cost, this newly derived crescendo diffusion yields better
approximations in numerical tests.Comment: Revised version: 17 pages, 6 figures, presented at Workshop on Moment
Methods in Kinetic Gas Theory, ETH Zurich, 2008 2 figures added, minor
correction
Efficient Resolution of Anisotropic Structures
We highlight some recent new delevelopments concerning the sparse
representation of possibly high-dimensional functions exhibiting strong
anisotropic features and low regularity in isotropic Sobolev or Besov scales.
Specifically, we focus on the solution of transport equations which exhibit
propagation of singularities where, additionally, high-dimensionality enters
when the convection field, and hence the solutions, depend on parameters
varying over some compact set. Important constituents of our approach are
directionally adaptive discretization concepts motivated by compactly supported
shearlet systems, and well-conditioned stable variational formulations that
support trial spaces with anisotropic refinements with arbitrary
directionalities. We prove that they provide tight error-residual relations
which are used to contrive rigorously founded adaptive refinement schemes which
converge in . Moreover, in the context of parameter dependent problems we
discuss two approaches serving different purposes and working under different
regularity assumptions. For frequent query problems, making essential use of
the novel well-conditioned variational formulations, a new Reduced Basis Method
is outlined which exhibits a certain rate-optimal performance for indefinite,
unsymmetric or singularly perturbed problems. For the radiative transfer
problem with scattering a sparse tensor method is presented which mitigates or
even overcomes the curse of dimensionality under suitable (so far still
isotropic) regularity assumptions. Numerical examples for both methods
illustrate the theoretical findings
Recommended from our members
DAYLIGHTING CALCULATIONS FOR NON-RECTANGULAR INTERIOR SPACES WITH SHADING DEVICES
Employing a general numerical model for the calculation of daylighting in interior spaces the sensitivity of daylighting to nonrectangular rooms, such as L-shaped rooms, and to other internal visual obstructions, such as light-shelves, is discussed. In addition, the model has been expanded to allow the treatment of opaque, semi-transparent, and translucent window overhangs, which may be positioned at any or all sides of a window. Further, the model has now the capability of graphical output. Thus, all results are shown in the form of contour plots, showing room outline, sunny areas, and constant-illumination or constant-daylight factor lines