14 research outputs found

    Self-similar vortex-induced vibrations of a hanging string

    No full text
    International audienceAn experimental analysis of the vortex-induced vibrations of a hanging string with variable tension along its length is presented in this paper. It is shown that standing waves develop along the hanging string. First, the evolution of the Strouhal number S t with the Reynolds number R e follows a trend similar to what is observed for a circular cylinder in a flow for relatively low Reynolds numbers (32 < Re < 700). Second, the extracted mode shapes are self-similar: a rescaling of the spanwise coordinate by a self-similarity coefficient allows all of them to collapse onto a unique function. The self-similar behaviour of the spatial distribution of the vibrations along the hanging string is then explained theoretically by performing a linear stability analysis of an adapted wake-oscillator model. This linear stability analysis finally provides an accurate description of the mode shapes and of the evolution of the self-similarity coefficient with the flow speed

    Flutter of long flexible cylinders in axial flow

    No full text
    International audienceWe consider the stability of a thin flexible cylinder considered as a beam, when subjected to axial flow and fixed at the upstream end only. A linear stability analysis of transverse motion aims at determining the risk of flutter as a function of the governing control parameters such as the flow velocity or the length of the cylinder. Stability is analysed applying a finite-difference scheme in space to the equation of motion expressed in the frequency domain. It is found that, contrary to previous predictions based on simplified theories, flutter may exist for very long cylinders, provided that the free downstream end of the cylinder is well-streamlined. More generally, a limit regime is found where the length of the cylinder does not affect the characteristics of the instability, and the deformation is confined to a finite region close to the downstream end. These results are found complementary to solutions derived for shorter cylinders and are confirmed by linear and nonlinear computations using a Galerkin method. A link is established to similar results on long hanging cantilevered systems with internal or external flow. The limit case of vanishing bending stiffness, where the cylinder is modelled as a string, is analysed and related to previous results. Comparison is also made to existing experimental data, and a simple model for the behaviour of long cylinders is proposed

    A smart pipe energy harvester excited by fluid flow and base excitation

    Get PDF
    This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input base excitation for generating the electrical energy. We believe that this work shows the first attempt to formulate a unified analytical approach of flow-induced vibrational smart pipe energy harvester in application to the smart sensor-based structural health monitoring systems including those to detect flutter instability. The arbitrary topology of the thin electrode segments located at the surface of the circumference region of the smart pipe has been used so that the electric charge cancellation can be avoided. The analytical techniques of the smart pipe conveying fluid with discontinuous piezoelectric segments and proof mass offset, connected with the standard AC–DC circuit interface, have been developed using the extended charge-type Hamiltonian mechanics. The coupled field equations reduced from the Ritz method-based weak form analytical approach have been further developed to formulate the orthonormalised dynamic equations. The reduced equations show combinations of the mechanical system of the elastic pipe and fluid flow, electromechanical system of the piezoelectric component, and electrical system of the circuit interface. The electromechanical multi-mode frequency and time signal waveform response equations have also been formulated to demonstrate the power harvesting behaviours. Initially, the optimal power output due to optimal load resistance without the fluid effect is discussed to compare with previous studies. For potential application, further parametric analytical studies of varying partially piezoelectric pipe segments have been explored to analyse the dynamic stability/instability of the smart pipe energy harvester due to the effect of fluid and input base excitation. Further proof between case studies also includes the effect of variable flow velocity for optimal power output, 3-D frequency response, the dynamic evolution of the smart pipe system based on the absolute velocity-time waveform signals, and DC power output-time waveform signals

    Effect of Higher Stress Harmonics and Spectral Width on Fatigue Damage of Marine Risers

    No full text
    Recently, experimental data from vortex induced vibrations (VIV) of long flexible cylinders have revealed the existence of (i) higher harmonic stress components, and (ii) chaotic response characteristics, in addition to the well-known first harmonic responses. To assess the effect of these phenomena on fatigue damage of long flexible structures, we generate alternative stress time series, with and then without higher harmonic components; as well as time series, which have either sharply peaked power spectral densities (PSD), or broad-banded PSDs, characteristic of chaotic response. We show that for stresses containing higher harmonics, the predicted fatigue damage to the riser can increase by a factor of 2.5 relative to the damage caused by stresses containing only the first harmonic and having equivalent total power. Likewise, for stresses with a significantly spread PSD, an indicator of chaotic response, the damage to the riser is increased by a factor of 1.8, relative to a stress with narrow-band PSD and the same total power. Thus, it is found that the increase in fatigue damage caused by chaotic response can be as significant as that caused by the stress higher harmonic components. Topics: Stress , Fatigue damage , Marine drilling risersNicolas G. and Dorothea K. Dumbros Scholarship and Fellowship Fun

    Monitoring VIV fatigue damage on marine risers

    No full text
    Long flexible cylinders (e.g., risers, tendons and mooring lines) exposed to the marine environment encounter ocean currents leading to vortex-induced vibration (VIV). These oscillations, often driven at high frequencies over extended periods of time, may result in structural failure of the member due to fatigue damage accumulation. Recent developments in instrumentation and installation of data acquisition systems on board marine risers have made accurate measurement of riser responses possible. This paper aims at using the data from these data acquisition devices (typically strain gages and accelerometers) in order to understand the evolution of the riser VIV, with the final aim of estimating the fatigue damage. For this purpose we employ systematic techniques to reconstruct riser VIV response using the data from the available sensors. The reconstructed riser response allows estimation of the dynamic axial stresses due to bending and consequently the estimates of the fatigue damage along the entire riser. The above methods can take into account the fatigue damage arising from complicated riser motions involving the presence of traveling waves even with the use of very few sensors. An alternate approach using a Van der Pol wake oscillator model is also explored to obtain fatigue life estimates caused by riser VIV
    corecore