7,728 research outputs found
Entropy of the Kerr-Sen Black Hole
We study the entropy of Kerr-Sen black hole of heterotic string theory beyond
semiclassical approximations. Applying the properties of exact differentials
for three variables to the first law thermodynamics we derive the corrections
to the entropy of the black hole. The leading (logarithmic) and non leading
corrections to the area law are obtained.Comment: 8 pages. Corrected references
Hawking Radiation as a Mechanism for Inflation
The Friedman-Robertson-Walker (FRW) space-time exhibits particle creation
similar to Hawking radiation of a black hole. In this essay we show that this
FRW Hawking radiation leads to an effective negative pressure fluid which can
drive an inflationary period of exponential expansion in the early Universe.
Since the Hawking temperature of the FRW space-time decreases as the Universe
expands this mechanism naturally turns off and the inflationary stage
transitions to a power law expansion associated with an ordinary radiation
dominated Universe.Comment: 6 pages. Published version -- Awarded "Honorable Mention" for the
2012 Gravity Research Foundation Essay Contes
Coupling parameters and the form of the potential via Noether symmetry
We explore the conditions for the existence of Noether symmetries in the
dynamics of FRW metric, non minimally coupled with a scalar field, in the most
general situation, and with nonzero spatial curvature. When such symmetries are
present we find general exact solution for the Einstein equations. We also show
that non Noether symmetries can be found.
Finally,we present an extension of the procedure to the Kantowski- Sachs
metric which is particularly interesting in the case of degenerate Lagrangian.Comment: 13 pages, no figure
Quantum Tunneling, Blackbody Spectrum and Non-Logarithmic Entropy Correction for Lovelock Black Holes
We show, using the tunneling method, that Lovelock black holes Hawking
radiate with a perfect blackbody spectrum. This is a new result. Within the
semiclassical (WKB) approximation the temperature of the spectrum is given by
the semiclassical Hawking temperature. Beyond the semiclassical approximation
the thermal nature of the spectrum does not change but the temperature
undergoes some higher order corrections. This is true for both black hole
(event) and cosmological horizons. Using the first law of thermodynamics the
black hole entropy is calculated. Specifically the -dimensional static,
chargeless black hole solutions which are spherically symmetric and
asymptotically flat, AdS or dS are considered. The interesting property of
these black holes is that their semiclassical entropy does not obey the
Bekenstein-Hawking area law. It is found that the leading correction to the
semiclassical entropy for these black holes is not logarithmic and next to
leading correction is also not inverse of horizon area. This is in contrast to
the black holes in Einstein gravity. The modified result is due to the presence
of Gauss-Bonnet term in the Lovelock Lagrangian. For the limit where the
coupling constant of the Gauss-Bonnet term vanishes one recovers the known
correctional terms as expected in Einstein gravity. Finally we relate the
coefficient of the leading (non-logarithmic) correction with the trace anomaly
of the stress tensor.Comment: minor modifications, two new references added, LaTeX, JHEP style, 34
pages, no figures, to appear in JHE
Global Waste Management Outlook
The Global Waste Management Outlook, a collective effort of the United Nations Environment Programme and the International Waste Management Association, is a pioneering scientific global assessment on the state of waste management and a call for action to the international community. Prepared as a follow up to the Rio+20 Summit and as a response to UNEP Governing Council decision GC 27/12, the document establishes the rationale and the tools for taking a holistic approach towards waste management and recognizing waste and resource management as a significant contributor to sustainable development and climate change mitigation. To complement the Sustainable Development Goals of the Post-2015 Development Agenda, the Outlook sets forth Global Waste Management Goals and a Global Call to Action to achieve those goals
Phase transition and scaling behavior of topological charged black holes in Horava-Lifshitz gravity
Gravity can be thought as an emergent phenomenon and it has a nice
"thermodynamic" structure. In this context, it is then possible to study the
thermodynamics without knowing the details of the underlying microscopic
degrees of freedom. Here, based on the ordinary thermodynamics, we investigate
the phase transition of the static, spherically symmetric charged black hole
solution with arbitrary scalar curvature in Ho\v{r}ava-Lifshitz gravity at
the Lifshitz point . The analysis is done using the canonical ensemble
frame work; i.e. the charge is kept fixed. We find (a) for both and
, there is no phase transition, (b) while case exhibits the second
order phase transition within the {\it physical region} of the black hole. The
critical point of second order phase transition is obtained by the divergence
of the heat capacity at constant charge. Near the critical point, we find the
various critical exponents. It is also observed that they satisfy the usual
thermodynamic scaling laws.Comment: Minor corrections, refs. added, to appear in Class. Quant. Grav.
arXiv admin note: text overlap with arXiv:1111.0973 by other author
Effective Values of Komar Conserved Quantities and Their Applications
We calculate the effective Komar angular momentum for the Kerr-Newman (KN)
black hole. This result is valid at any radial distance on and outside the
black hole event horizon. The effcetive values of mass and angular momentum are
then used to derive an identity () which relates the Komar
conserved charge () corresponding to the null Killing vector
() with the thermodynamic quantities of this black hole. As an
application of this identity the generalised Smarr formula for this black hole
is derived. This establishes the fact that the above identity is a local form
of the inherently non-local generalised Smarr formula.Comment: v3, minor modifications over v2; LaTex, 9 pages, no figures, to
appear in Int. Jour. Theo. Phy
Noncommutative Geometry Inspired Rotating Black Hole in Three Dimensions
We find a new rotating black hole in three-dimensional anti-de Sitter space
using an anisotropic perfect fluid inspired by the noncommutative black hole.
We deduce the thermodynamical quantities of this black hole and compare them
with those of a rotating BTZ solution.Comment: 7 page
The Complex Time WKB Approximation And Particle Production
The complex time WKB (CWKB) approximation has been an effective technique to
understand particle production in curved as well as in flat spacetime. Earlier
we obtained the standard results on particle production in time dependent gauge
in various curved spacetime. In the present work we generalize the technique of
CWKB to the equivalent problems in space dependent gauge. Using CWKB, we first
obtain the gauge invariant result for particle production in Minkowski
spacetime in strong electric field. We then carry out particle production in
de-Sitter spacetime in space dependent gauge and obtain the same result that we
obtained earlier in time dependent gauge. The results obtained for de-Sitter
spacetime has a obvious extension to particle production in black hole
spacetime. It is found that the origin of Planckian spectrum is due to repeated
reflections between the turning points. As mentioned earlier, it is now
explicitly shown that particle production is accompanied by rotation of
currents.Comment: 12 pages, Revte
Glassy Phase Transition and Stability in Black Holes
Black hole thermodynamics, confined to the semi-classical regime, cannot
address the thermodynamic stability of a black hole in flat space. Here we show
that inclusion of correction beyond the semi-classical approximation makes a
black hole thermodynamically stable. This stability is reached through a phase
transition. By using Ehrenfest's scheme we further prove that this is a glassy
phase transition with a Prigogine-Defay ratio close to 3. This value is well
placed within the desired bound (2 to 5) for a glassy phase transition. Thus
our analysis indicates a very close connection between the phase transition
phenomena of a black hole and glass forming systems. Finally, we discuss the
robustness of our results by considering different normalisations for the
correction term.Comment: v3, minor changes over v2, references added, LaTeX-2e, 18 pages, 3 ps
figures, to appear in Eour. Phys. Jour.
- …
