28 research outputs found

    miRviewer: a multispecies microRNA homologous viewer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression via binding to the 3' ends of mRNAs. MiRNAs have been associated with many cellular events ascertaining their central role in gene regulation. In order to better understand miRNAs of interest it is of utmost importance to learn about the genomic conservation of these genes.</p> <p>Findings</p> <p>The miRviewer web-server, presented here, encompasses all known miRNAs of currently fully annotated animal genomes in a visual 'birds-eye' view representation. miRviewer provides a graphical outlook of the current miRNA world together with sequence alignments and secondary structures of each miRNA. As a test case we experimentally examined the expression of several miRNAs in various animals.</p> <p>Conclusions</p> <p>miRviewer completes the homologous miRNA space with hundreds of unreported miRNAs and is available at: <url>http://people.csail.mit.edu/akiezun/miRviewer</url></p

    Downregulation of Mir-31, Mir-155, and Mir-564 in Chronic Myeloid Leukemia Cells

    Get PDF
    BACKGROUND/AIMS: MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. However, little is known about the role of miRNAs in chronic myeloid leukemia (CML). Our objective is to decipher a miRNA expression signature associated with CML and to determine potential target genes and signaling pathways affected by these signature miRNAs. RESULTS: Using miRNA microarrays and miRNA real-time PCR we characterized the miRNAs expression profile of CML cell lines and patients in reference to non-CML cell lines and healthy blood. Of all miRNAs tested, miR-31, miR-155, and miR-564 were down-regulated in CML cells. Down-regulation of these miRNAs was dependent on BCR-ABL activity. We next analyzed predicted targets and affected pathways of the deregulated miRNAs. As expected, in K562 cells, the expression of several of these targets was inverted to that of the miRNA putatively regulating them. Reassuringly, the analysis identified CML as the main disease associated with these miRNAs. MAPK, ErbB, mammalian target of rapamycin (mTOR) and vascular endothelial growth factor (VEGF) were the main molecular pathways related with these expression patterns. Utilizing Venn diagrams we found appreciable overlap between the CML-related miRNAs and the signaling pathways-related miRNAs. CONCLUSIONS: The miRNAs identified in this study might offer a pivotal role in CML. Nevertheless, while these data point to a central disease, the precise molecular pathway/s targeted by these miRNAs is variable implying a high level of complexity of miRNA target selection and regulation. These deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of CML, and propose possible new avenues for therapeutic treatment

    Regulation of Cancer Aggressive Features in Melanoma Cells by MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs with regulatory roles, which are involved in a broad spectrum of physiological and pathological processes, including cancer. A common strategy for identification of miRNAs involved in cell transformation is to compare malignant cells to normal cells. Here we focus on identification of miRNAs that regulate the aggressive phenotype of melanoma cells. To avoid differences due to genetic background, a comparative high-throughput miRNA profiling was performed on two isogenic human melanoma cell lines that display major differences in their net proliferation, invasion and tube formation activities. This screening revealed two major cohorts of differentially expressed miRNAs. We speculated that miRNAs up-regulated in the more-aggressive cell line contribute oncogenic features, while the down-regulated miRNAs are tumor suppressive. This assumption was further tested experimentally on five candidate tumor suppressive miRNAs (miR-31, -34a, -184, -185 and -204) and on one candidate oncogenic miRNA (miR-17-5p), all of which have never been reported before in cutaneous melanoma. Remarkably, all candidate Suppressive-miRNAs inhibited net proliferation, invasion or tube formation, while miR-17-5p enhanced cell proliferation. miR-34a and miR-185 were further shown to inhibit the growth of melanoma xenografts when implanted in SCID-NOD mice. Finally, all six candidate miRNAs were detected in 15 different metastatic melanoma specimens, attesting for the physiological relevance of our findings. Collectively, these findings may prove instrumental for understanding mechanisms of disease and for development of novel therapeutic and staging technologies for melanoma

    HIV-1 infection increases microRNAs that inhibit Dicer1, HRB and HIV-EP2, thereby reducing viral replication.

    No full text
    HIV-1 is the causative agent of AIDS (Autoimmune Deficiency Syndrome). HIV-1 infection results in systemic CD4+ T cell depletion, thereby impairing cell-mediated immunity. MicroRNAs are short (~22 nucleotides long), endogenous single-stranded RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3' UTR) of mRNA transcripts. The relation between HIV-1 infection and human miRNA expression profile has been previously investigated, and studies have shown that the virus can alter miRNA expression and vice versa. Here, we broaden the understanding of the HIV-1 infection process, and show that miRNA-186, 210 and 222 are up-regulated following HIV-1 infection of human Sup-T1 cells. As a result, the host miRNA target genes: Dicer1 (Double-Stranded RNA-Specific Endoribonuclease), HRB (HIV-1 Rev-binding protein) and HIV-EP2 (Human Immunodeficiency Virus Type I Enhancer Binding Protein 2), are down-regulated. Moreover, testing the miRNA-gene anti- correlation on the Jurkat and the HeLa-MAGI cell lines demonstrated the ability of the miRNAs to down-regulate viral expression as well. To conclude, we found that human miR-186, 210 and 222 directly regulate the human genes Dicer1, HRB and HIV-EP2, thus may be filling key roles during HIV-1 replication and miRNA biogenesis. This finding may contribute to the development of new therapeutic strategies

    Rare Genetic Variants in Jewish Patients Suffering from Age-Related Macular Degeneration

    No full text
    Purpose: To identify rare genetic variants in early age-related macular degeneration (AMD) utilizing whole-exome sequencing (WES). Methods: Eight non-related early-AMD families of different Jewish ethnicities were ascertained. Initial mutation screening (phase-1) included common complement factor-H (CFH) p.Y402H; and age related maculopathy susceptibility 2 (ARMS2) p.A69S; and rare variants complement factor-I (CFI) p.V412M; and hemicentin1 (HMCN1) c.4163delC identified previously in our population. Four families, whose initial screening for the aforementioned variants was negative, underwent WES (phase-2). Bioinformatics filtering was based on functionality (from a panel of 234 genes with proven or presumed association to AMD); predicted severity; and frequency (rare variants with minor allele frequency &lt;1%). When applicable, further screening for specific rare variants was carried out on additional cases of similar ethnicities and phenotypes (phase-3). Results: Phase-1 identified three families carrying CFI p.V412M mutation. WES analysis detected probable disease-related variants in three out of the remaining families. These included: a family with a variant in PLEKHA1 gene p.S177N; a family with previously reported variant p.R1210C in CFH gene; and two families with the C3 p.R735W variant. Conclusions: Rare, high-penetrance variants have a profound contribution to early-AMD pathogenesis. Utilization of WES in genetic research of multifactorial diseases as AMD, allows a thorough comprehensive analysis with the identification of previously unreported rare variants

    Monogenic Causes of Apparently Idiopathic Perinatal Intracranial Hemorrhage

    No full text
    Objective: Perinatal intracranial hemorrhage (pICH) is a rare event that occurs during the fetal/neonatal period with potentially devastating neurological outcome. However, the etiology of pICH is frequently hard to depict. We investigated the role of rare genetic variations in unexplained cases of pICH. Methods: We performed whole-exome sequencing (WES) in fetuses and term neonates with otherwise unexplained pICH and their parents. Variant causality was determined according to the American College of Medical Genetics and Genomics (ACMG) criteria, consistency between suggested genes and phenotypes, and mode of inheritance. Results: Twenty-six probands (25 families) were included in the study (9 with a prenatal diagnosis and 17 with a postnatal diagnosis). Intraventricular hemorrhage (IVH) was the most common type of hemorrhage (n = 16, 62%), followed by subpial (n = 4, 15%), subdural (n = 4, 15%), and parenchymal (n = 2, 8%) hemorrhage. Causative/likely causative variants were found in 4 subjects from 3 of the 25 families (12%) involving genes related to the brain microenvironment (COL4A1, COL4A2, and TREX-1). Additionally, potentially causative variants were detected in genes related to coagulation (GP1BA, F11, Von Willebrand factor [VWF], FGA, and F7; n = 4, 16%). A potential candidate gene for phenotypic expansion related to microtubular function (DNAH5) was identified in 1 case (4%). Fifty-five percent of the variants were inherited from an asymptomatic parent. Overall, these findings showed a monogenic cause for pICH in 12% to 32% of the families. Interpretation: Our findings reveal a clinically significant diagnostic yield of WES in apparently idiopathic pICH and support the use of WES in the evaluation of these cases. ANN NEUROL 2021;89:813–822
    corecore