1,587 research outputs found

    Application of reduced-set pareto-lipschitzian optimization to truss optimization

    Get PDF
    In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems

    Solar Cooling Demonstration Unit

    Get PDF

    Coordination Implications of Software Coupling in Open Source Projects

    Get PDF
    The effect of software coupling on the quality of software has been studied quite widely since the seminal paper on software modularity by Parnas [1]. However, the effect of the increase in software coupling on the coordination of the developers has not been researched as much. In commercial software development environments there normally are coordination mechanisms in place to manage the coordination requirements due to software dependencies. But, in the case of Open Source software such coordination mechanisms are harder to implement, as the developers tend to rely solely on electronic means of communication. Hence, an understanding of the changing coordination requirements is essential to the management of an Open Source project. In this paper we study the effect of changes in software coupling on the coordination requirements in a case study of a popular Open Source project called JBoss

    Robots that can adapt like animals

    Get PDF
    As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot "think outside the box" to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robot's intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury

    Bayesian optimization for materials design

    Full text link
    We introduce Bayesian optimization, a technique developed for optimizing time-consuming engineering simulations and for fitting machine learning models on large datasets. Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs in as few experiments as possible. We focus on the case when materials designs are parameterized by a low-dimensional vector. Bayesian optimization is built on a statistical technique called Gaussian process regression, which allows predicting the performance of a new design based on previously tested designs. After providing a detailed introduction to Gaussian process regression, we introduce two Bayesian optimization methods: expected improvement, for design problems with noise-free evaluations; and the knowledge-gradient method, which generalizes expected improvement and may be used in design problems with noisy evaluations. Both methods are derived using a value-of-information analysis, and enjoy one-step Bayes-optimality

    Agent-based simulation of open source evolution

    Get PDF
    We present an agent-based simulation model developed to study how size, complexity and effort relate to each other in the development of open source software (OSS). In the model, many developer agents generate, extend, and re-factor code modules independently and in parallel. This accords with empirical observations of OSS development. To our knowledge, this is the first model of OSS evolution that includes the complexity of software modules as a limiting factor in productivity, the fitness of the software to its requirements, and the motivation of developers. Validation of the model was done by comparing the simulated results against four measures of software evolution (system size, proportion of highly complex modules, level of complexity control work, and distribution of changes) for four large OSS systems. The simulated results resembled the observed data, except for system size: three of the OSS systems showed alternating patterns of super-linear and sub-linear growth, while the simulations produced only super-linear growth. However, the fidelity of the model for the other measures suggests that developer motivation and the limiting effect of complexity on productivity have a significant effect on the development of OSS systems and should be considered in any model of OSS development
    corecore