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Abstract In this paper, a recently proposed global Lipschitz optimization algorithm
PLOR (Pareto-Lipschitzian Optimization with Reduced-set) is further developed, in-
vestigated and applied to truss optimization problems. Partition patterns of the PLOR
algorithm are similar to those of DIRECT (DIviding RECTangles), which was widely
applied to different real-life problems. However here a set of all Lipschitz constants
is reduced to just two: the maximal and the minimal ones. In such a way the PLOR ap-
proach is independent of any user-defined parameters and balances equally local and
global search during the optimization process. An expanded list of other well-known
DIRECT-type algorithms is used in investigation and experimental comparison us-
ing the standard test problems and truss optimization problems. The experimental
investigation shows that the PLOR algorithm gives very competitive results to other
DIRECT-type algorithms using standard test problems and performs pretty well on
real truss optimization problems.
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E-mail: dainius.rusakevicius@vgtu.lt

Dmitrij Šešok
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1 Introduction

DIRECT [15] is a well-known partitioning-based algorithm that balances local and
global search in an attempt to efficiently find the global minimizer. Optimization
problems solved by DIRECT can be formulated as minimization of a multidimensional
multiextremal “black-box” function:

f

⇤ = f (x⇤) = min
x2D

f (x), (1)

where the feasible region D = [a,b] = {x 2 Rn : a(i)  x(i)  b(i),1  i  n} is
n-dimensional hyper-rectangle, a,b are given vectors in Rn, and k · k denotes the
Euclidean norm. For convergence reason usually it is assumed, that the real-valued
objective function f is Lipschitz-continuous with unknown Lipschitz constant over
the feasible region, i.e. for every x,y 2 D there exists a constant 0 < L < •, such that

| f (x)� f (y)| Lkx� yk.

Moreover, if the objective function is continuous in the neighborhood of the global
minimizer, then DIRECT can sample deterministically a point near enough to the min-
imizer [14]. Note, that extension of DIRECT was proposed in the same paper [14] to
handle inequality and integer constraints, but this case is outside of interest in this
paper.

The DIRECT algorithm includes two major procedures: partition (DIviding
RECTangles) and sampling. It begins with scaling the feasible region into the unit
hyper-cube and referring to the original space D only when evaluating the values of
the objective function. In every iteration the DIRECT algorithm identifies some poten-
tially optimal hyper-rectangles (which can potentially contain the global minimizers),
satisfying Definition 1. Then the DIRECT algorithm computes values of the objective
function at sample points in each potential hyper-rectangle and subdivides it along
the longest coordinate directions starting from the directions with the lowest function
values.

Definition 1 Let S be a set of all hyper-rectangles created by DIRECT after k itera-
tions. Let c

i

= (a
i

+b

i

)/2 denote the center point of the i-th hyper-rectangle, and let
d

i

= kb

i

�a

i

k/2 denote the distance from the center to the vertices (radius). Let e > 0
be a positive constant and f

min

be the currently known best function value. A hyper-
rectangle S

j

2 S is said to be potentially optimal if there exists some rate-of-change
constant K̃ > 0 such that

f (c
j

)� K̃d

j

 f (c
i

)� K̃d

i

, 8i 2 S (2)
f (c

j

)� K̃d

j

 f

min

� e| f
min

|. (3)
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Fig. 1 Visualization of selection of the largest and the smallest Pareto optimal hyper-rectangles using PLOR

A hyper-rectangle is potentially optimal if the lower Lipschitz bound for the objec-
tive function over it computed by the left side of (2) is the smallest one with some
positive constant K̃ compared to that of all current hyper-rectangles. The purpose of
an additional heuristic rule (3) based on the parameter e is to guard the DIRECT al-
gorithm against excessive emphasis on local search [15]. In the original DIRECT [15]
the authors report that the values of e 2 [10�7,10�3] work well. Later [14] the author
revised the right-hand-side of (3) to include a lower bound, i.e.

f (c
j

)� K̃d

j

 f

min

�max{e| f
min

|,10�8}. (4)

In contrast, a recently proposed Pareto-Lipschitzian approach (PLO) [28] identi-
fies hyper-rectangles which are non-dominated (Pareto optimal) with respect to an
objective vector of infinite dimension composed of Lipschitz bounds corresponding
to all positive K̃. In terms of vector optimization theory, the algorithms inspired by
DIRECT select hyper-rectangles belonging to a subset of Pareto optimal set. The new
concept is that the Pareto optimality is defined regarding all the Lipschitz functions
as an objective vector of continuous dimension. The scientific advantage of the new
approach is the strict theoretical background without any user-defined parameters.
The practical significance is the obtained larger number of Pareto optimal hyper-
rectangles, which can be explored in parallel. However, the results revealed that PLO
sometimes wastes a lot of time improving a local minimum and delaying the discov-
ery of the global one [28] similar to original DIRECT.

The reduced objective vector corresponding to two objectives was proposed
in [29]: the Lipschitz bound with the smallest possible positive K̃ and the Lipschitz
bound with the largest possible K̃. The use of such objectives corresponds to selection
of only the largest and the smallest Pareto optimal hyper-rectangles (see Fig. 1). The
resulting Reduced-set Pareto-Lipschitzian Optimization (PLOR) algorithm balances
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equally local and global search during the optimization process. In the present paper
we develop the idea further, investigate the algorithm and apply it to truss optimiza-
tion.

The paper is organized as follows. In Sect. 2 we present an overview of modifi-
cations and applications of the DIRECT algorithm. In Sect. 3 we describe the PLOR

algorithm. In Sect. 4-5 we compare the PLOR algorithm with the original DIRECT and
its well-know modifications on standard global optimization test problems [15] and
on real truss optimization problems. Finally, in Sect. 6 we give the conclusions.

2 Modifications and applications of the DIRECT algorithm

Due to its simplicity and efficiency (especially for low-dimensional global optimiza-
tion problems), the DIRECT algorithm has gained popularity in the optimization com-
munity. There are numerous applications of DIRECT in various fields. In many appli-
cations DIRECT is the sole method [1,13,39,40], in some others DIRECT is applied
with other methods of global and local search [2,4,24].

A locally biased version of DIRECT, named DIRECT-l was introduced and an-
alyzed in [11]. In the original DIRECT algorithm, the size of a hyper-rectangle (d)
is measured by the Euclidean distance from its center to a corner. In DIRECT-l,
the size of a hyper-rectangle is instead measured by the length of its longest side.
Such a measure corresponds to the infinity norm and allows the algorithm to group
more hyper-rectangles with the same size. Secondly, in DIRECT-l at most one hyper-
rectangle from each group is subdivided, even if there are more than one potentially
optimal hyper-rectangle in some groups. This allows reduction of the number of divi-
sions within a group. The results presented in [11] suggest, that DIRECT-l should be
used for lower dimensional problems, which do not have too many local and global
minima. The results also demonstrate the effects of the modifications in DIRECT-l.
The convergence occurs in a fewer function evaluations, but can take more iterations.
This is due to a fewer hyper-rectangles being chosen in each iteration.

In [9], numerical experiments were presented to show that the original DIRECT
algorithm is sensitive to the additive scaling of the objective function. It is also shown,
that DIRECT does not perform well when the values of the objective function are large
enough. The modified DIRECT-m algorithm was proposed to eliminate this sensitivity.
The authors suggest to scale the function values after each iteration by subtracting
f

median

– the median of the collected function values. The result is an update to (3):

f (c
j

)� K̃d

j

 f

min

� e| f
min

� f

median

|. (5)

As shown in [41] DIRECT is not strongly homogeneous algorithm. In [22] the
properties of DIRECT related to the scaling of the objective function is investigated
once again. The author states that DIRECT-m or DIRECT-a [22] must be used in order
to eliminate sensitivity to the additive and linear scaling of the objective function.
In DIRECT-a Definition 1 of the potentially optimal hyper-rectangle was changed
similarly to DIRECT-m:

f (c
j

)� K̃d

j

 f

min

� e| f
min

� f

aver

|, (6)



Application of reduced-set Pareto-Lipschitzian optimization to truss optimization 5

here f

aver

is the average of { f |Q1  f  Q3}, where Q1 and Q3 are two quartiles of
all function evaluations.

It is well-known that the DIRECT global optimization algorithm can quickly get
close to the basin of the minimizer, but takes longer to achieve a high degree of ac-
curacy [14]. A common strategy to eliminate such defect is to combine DIRECT with
a good local optimization algorithm. Jones [14] suggests to use DIRECT as a start-
ing point generator and after some initial budget of function evaluations for DIRECT
switch to local optimization. After convergence of the local optimization it switches
back to DIRECT. By using the best function value found by either DIRECT or the local
optimization, DIRECT will search more globally. This is because the value of f

min

(see
(3)) affects which hyper-rectangles are potentially optimal. If DIRECT finds a better
point, it again switches to the local optimization, and so on.

Similar idea is implemented in [24] as a new DIRMIN algorithm for solving dif-
ficult large-scale global optimization problems. A multi-start inspired DIRMIN algo-
rithm uses DIRECT as a deterministic generator of the starting points and employs
a local optimization to improve the produced estimate of the global minimum. Un-
like [14], DIRMIN performs a local optimization starting from centroids of each poten-
tially optimal hyper-rectangle. Even this strategy may still not suffice to solve large-
scale global optimization problems (e.g. optimization of Morse potential of molecular
clusters). In order to tackle these problems, a new algorithm called DIRMIN-TL, that
consists in repeatedly applying DIRMIN on modifications of the variable space defined
on the basis of the information gained up to that point.

In [4], the authors use DIRECT as a starting point generator combined with the
local optimization for solving the problem of design of the high-speed civil transport
(HSCT). They stop DIRECT and switch to local optimization once one of the hyper-
rectangles containing f

min

becomes a given small size.
It was shown in [2], that the DIRECT/DIRECT-l algorithm combined with Implicit

Filtering method (IFFCO) [3] – DIRECT-l-IFFCO is the most robust method for three
problems from the gas pipeline industry, while at the same time it uses a smaller num-
ber of function evaluations. Note that DIRECT and DIRECT-l alone were also able to
find a solution to the tested problem. However they needed more function evaluations,
sometimes substantially more, than with DIRECT-l-IFFCO or DIRECT-IFFCO.

Because the local optimization is often very sensitive to the initial point, this strat-
egy is often highly sensitive to the number of function evaluations consumed in the
global phase. A bi-level strategy is introduced into a modified DIRECT-b algorithm
to overcome this shortcoming in [23]. Numerical results show that the bi-level strat-
egy improves the ability of DIRECT to search for solutions with a high accuracy. A
useful property of the bi-level strategy is that such an approach can accelerate the
convergence in the framework of DIRECT itself.

DIRECT ideas were also generalized in the framework of diagonal partitions [37],
space-filling curves [18] and derivatives [16,17].

The typical DIRECT partition is by dividing rectangles. However, simplex parti-
tions were applied in a similar algorithm called DISIMPL [32–34,42]. Experiments
showed, that the proposed simplicial DISIMPL algorithm gives very competitive re-
sults to the DIRECT algorithm using standard test problems and performs particularly
well when the search space and the numbers of local and global minimizers may be
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reduced by taking into account symmetries of the objective function. Even compar-
ing with the DIRECT version for symmetric functions (SymDIRECT) proposed in [12],
both simplicial DISIMPL versions give significantly better results.

It is also well-known, that DIRECT-type global optimization algorithms of-
ten spend an excessive number of function evaluations on problems with many
local optima exploring suboptimal local minima, thereby delaying discovery of
the global minimum. In order to address this problem, a globally-biased version
Gb-DISIMPL [31] with an adaptive balancing of local and global information during
the search have been introduced, implemented and experimentally investigated. Ex-
tensive numerical experiments executed on 800 multidimensional multiextremal test
functions had showed a promising performance of the new acceleration technique
with respect to competitors.

3 Reduced-set Pareto-Lipschitzian optimization

Since PLOR (Pareto-Lipschitzian Optimization with Reduced-set) is a reduced version
of PLO and the theoretical justification is an important issue of both PLO and PLOR,
we present a mathematical formulation of these algorithms following the lines of the
PLO and PLOR descriptions in [28,29] with the corresponding changes.

The concept of Pareto optimality (see, e.g., [6,27,30]) is traditionally used in the
cases where the objective is a vector-function F(z) = {Fw(z) : w 2 W}. Here z is the
decision, w is a component index of the objective-vector F(z), and W is a set of all
components w .

Let us consider the following multi-objective minimization problem:

min
z

F(z).

Separate objective components Fw(z) may be conflicting – decrease of one may cor-
respond to increase of another. Therefore usually there is no single solution – a deci-
sion which would be the best according to all objective components. Because of this
Pareto optimal (non-dominated) decisions are sought in multi-objective optimization.

Definition 2 The decision z

i

dominates the decision z

j

(we denote z

i

� z

j

), if

Fw(zi

)  Fw(z j

), for all w 2 W
Fw(zi

) < Fw(z j

), for at least one w 2 W .

Here we consider minimization, while in maximization the inequalities should be
reversed.

Definition 3 The decision z

⇤ is called Pareto optimal, if there is no decision z

i

dom-
inating it.

Let us now return to the single-objective global optimization of a Lipschitz func-
tion, but use the concept of Pareto optimal decision to define potentially optimal
hyper-rectangles.
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Suppose that at the current step of the partitioning algorithm the feasible region
D = [a,b] ⇢ Rn is partitioned into hyper-rectangles z

i

= [a
i

,b
i

] ⇢ D, i 2 I. As for
the basic DIRECT algorithm, c

i

denotes the center of the hyper-rectangle z

i

, and d

i

denotes the distance from the center point to the vertices (radius). The value of the
objective function f is known at the centers of hyper-rectangles: f (c

i

).
The lower bound for the objective function over the hyper-rectangle c

i

based on
Lipschitz condition with a constant w can be computed as

Lw(zi

) = f (c
i

)�w d

i

. (7)

Expression (7) shows that the lower bound over the hyper-rectangle z

i

is smaller for a
smaller f (c

i

) or a larger d

i

for all possible values of the Lipschitz constant w . We do
not assume that the actual Lipschitz constant is known and use the whole possible set
of positive constants. Let us compare the “quality” of different hyper-rectangles by
their lower bounds. For example, we say that the hyper-rectangle z

i

is better than the
hyper-rectangle z

j

for a given w , if its lower bound is lower: Lw(zi

) < Lw(z j

). The
unknown Lipschitz constants are regarded as different components of multi-criteria
comparison based on lower bounds Lw .

Definition 4 The hyper-rectangle z

i

, i2 I, dominates the hyper-rectangle z

j

, j 2 I (we
denote z

i

� z

j

), if

Lw(zi

)  Lw(z j

), for all w 2 W ,

Lw(zi

) < Lw(z j

), for at least one w 2 W .

Definition 5 The hyper-rectangle z

i

, i 2 I, is called Pareto optimal if there is no
hyper-rectangle z

j

, j 2 I, dominating z

i

.

We denote the set of Pareto optimal hyper-rectangles by I

P

. It is the solution to
the multi-objective problem

min
i2I

L(z
i

), (8)

where L(z) = {Lw(z) : w 2W} is the vector-function with lower bounds based on var-
ious possible constants w as the components. Pareto-Lipschitzian optimization (PLO)
algorithm [28] chooses Pareto optimal hyper-rectangles as potentially optimal in the
framework of partitioning inspired by the DIRECT algorithm.

We note that potentially optimal hyper-rectangles defined by Definition 1 belong
to the set of Pareto optimal hyper-rectangles. This is because the hyper-rectangle z

i

is Pareto optimal if inequality (2) holds. It is optimal with regards to the objective L

K̃

and w > K̃ can be chosen so that Lw(zi

) < Lw(z j

) for d

j

< d

i

as well as w < K̃ can
be chosen so that Lw(zi

) < Lw(z j

) for d

j

> d

i

. Therefore it is not dominated by any
z

j

.
Let us now build a constructive definition of dominance corresponding to Def-

inition 4. By substituting (7) into Definition 4, inequalities become f (c
i

)�w d

i


(<) f (c

j

)�w d

j

and f (c
i

)� f (c
j

) (<)w(d
i

�d

j

). If d

i

= d

j

, Lw(zi

)< Lw(z j

) in-
dependently of w if f (c

i

) < f (c
j

) and is not otherwise. If d

i

> d

j

, Lw(zi

) < Lw(z j

)
independently of w if f (c

i

)  f (c
j

), otherwise there is a small positive value of
w < ( f (c

i

)� f (c
j

))/(d
i

� d

j

) that Lw(zi

) > Lw(z j

). If d

i

< d

j

, there is a large
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enough value of w > ( f (c
i

)� f (c
j

))/(d
i

� d

j

) that Lw(zi

) > Lw(z j

). Therefore,
Lw(zi

)< Lw(z j

) independently of w if

d

i

= d

j

and f (c
i

)< f (c
j

) or (9)
d

i

> d

j

and f (c
i

) f (c
j

). (10)

By splitting (10) into two cases f (c
i

) < f (c
j

) or f (c
i

) = f (c
j

) and combining the
first one with (9) we get a more general case

d

i

� d

j

and f (c
i

)< f (c
j

).

In this way we come to the following definition.

Definition 6 The hyper-rectangle z

i

, i2 I, dominates the hyper-rectangle z

j

, j 2 I (we
denote z

i

� z

j

), if

d

i

� d

j

and f (c
i

)< f (c
j

) or d

i

> d

j

and f (c
i

) f (c
j

).

Comparing this definition to Definition 2 or Definition 4 we can see that such a defi-
nition corresponds to a bi-objective problem

min
i2I

{ f (c
i

),�d

i

}, (11)

where we minimize the distance d

i

multiplied by �1 in order to have two minimized
objectives instead of one minimized and another maximized. Solution to this problem
is again the same set of Pareto optimal hyper-rectangles I

P

.
The number of Pareto optimal hyper-rectangles is larger than potentially opti-

mal defined by Definition 1. This can be exploited in parallel algorithms since the
larger number of hyper-rectangles to investigate enables easier balancing of work.
However it is also possible that the investigation of Pareto optimal hyper-rectangles
may be slower [28] since more time is spent for middle-sized hyper-rectangles in-
stead of improving a local minimum by investigating the hyper-rectangles around the
best point found and exploring the whole feasible region by investigating the largest
hyper-rectangles.

Therefore, the idea of a reduced subset of Pareto optimal hyper-rectangles is pro-
posed in [29]. The subset corresponds to extreme solutions to the problem (11):
choose only the largest and the smallest Pareto optimal hyper-rectangles. In other
words choose the largest hyper-rectangles for which f (c

i

) is minimal and choose
the hyper-rectangles with the smallest f (c

i

) among the largest hyper-rectangles. The
reduced set I

r

can be defined by the following conditions:

i 2 I

r

if f (c
i

) f (c
j

) 8 j 2 I and d

i

� d

k

8k : f (c
i

) = f (c
k

)
or d

i

� d

j

8 j 2 I and f (c
i

) f (c
k

) 8k : d

i

= d

k

.
(12)

Figure 2 illustrates expression (12) of PLOR and Definition 1 of DIRECT for the
two dimensional Branin test problem in the tenth iteration of the algorithms. Each
point on the graphs represents a rectangle, where the horizontal axis represents the
distance from the center of the rectangle to one of its corners, and on the vertical axis
the value of the function f evaluated at the center of rectangle. The filled red (black, in
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Fig. 2 Visual comparison of Pareto optimal rectangles selected by the PLOR algorithm and potentially
optimal rectangles selected by the DIRECT algorithm for the Branin problem in the tenth iteration

black-white) circles represent the intervals selected by the corresponding algorithms
which will be divided in the next phase of the iteration of these algorithms.

The subdivision of the potential hyper-rectangles in the PLOR algorithm is the
same as in the DIRECT algorithm. Figure 3 illustrates the first four iterations of the
PLOR algorithm by a two-dimensional Branin example. Each iteration of the algo-
rithm includes the following tasks:

– The basic task is to make observations (calculations of f (c
i

) at fixed c

i

). The dots
in the figure show the observation points, the accompanying numbers are function
values at these points.

– An auxiliary task consists of four parts:
– Definition of the potentially optimal hyper-rectangles. The yellow colors (dif-

ferent shades, in gray) indicate chosen hyper-rectangle in the current iteration
defined by expression (12).

– Creating new hyper-rectangles by splitting the current hyper-rectangles along
the longest dimensions.

– Defining new observation points in the middle of the new hyper-rectangles.
– Keeping the best current observation which will be accepted as the solution

at the end of the optimization process.
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Fig. 3 The first four iterations of partitioning and selection of Pareto optimal rectangles using the PLOR

algorithm for two dimensional Branin test problem

– Various stopping conditions can be used: number of iterations, number of function
evaluations, and so on. Since the global minima f

⇤ for standard functions are
known in advance, the PLOR algorithm stops when the point x is sampled such
that

pe =

(
f (x)� f

⇤

| f ⇤|  10�4, f

⇤ 6= 0,
f (x) 10�4, f

⇤ = 0.
(13)

For the truss optimization problems the compared algorithms are stopped after
some predefined number of function evaluations.

It follows from (12) that the reduced set I

r

of potentially optimal hyper-rectangles
to be chosen as potentially optimal includes the largest hyper-rectangle. Thus, the
largest hyper-rectangle will be divided into three equal parts until the error limit

max
i=1,...,N

d

i

 e
l

(N) (14)

will be reached. This limit is reached after the finite number of partitions, since at
least one of the largest hyper-rectangles is always divided and the resulting hyper-
rectangles are smaller. That proves the following proposition:
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Proposition 1 For any e
l

> 0 there exists a number Ne such that e
l

(N)  e
l

, if N �
Ne .

4 Numerical convergence analysis of the PLOR algorithm

It is well know, that the convergence rate of DIRECT highly depends on the objective
function and geometry of the problem. Speed of DIRECT when solving optimization
problems with a linear objective function was studied in [10] and extended (including
convex quadratic functions) in [8]. It was concluded that there are many factors which
can determine how quickly DIRECT converges [8].

In this section, we perform a similar numerical convergence analysis of the
PLOR algorithm and compare it with that of other DIRECT-type algorithms on two-
dimensional linear and convex quadratic functions used in [8]:

min f (x) = 4x1 +5x2, (linear function)

over the domain D = [0,1]2 with the global minimum f

⇤ = 0 at the point x

⇤ = (0,0)
and

min f (x) = x

2
1 + x

2
2, (convex function)

over the domain D = [�4.2,1.3]⇥ [�2.1,5.2] with the same optimal value f

⇤ = 0
and the global minimum point x

⇤ = (0,0).
We define the error at the kth iteration of the used algorithm in the same way as

in [8]:

e

k

= min
x

k

2D

kx

k

�X

⇤k,

where

X

⇤ = argmin
x2D

f (x) = {x

⇤| f (x⇤) = f

⇤}.

Table 1 and Fig. 4 presents the results of investigation based on the number of
function evaluations (N

f

) and the error (e
k

) for all used DIRECT-type algorithms on
both problems with the balance parameter set to e = 0. The results reveal that for these
two basic examples PLOR algorithm was able to achieve the same error accuracy
from the optimal solution point by using the lowest number of function evaluations.
The main reason is that the same error accuracy is achieved by all algorithms at the
same iteration, but at each iteration the PLOR algorithm selects only two potentially
optimal hyper-rectangles, when all other DIRECT-type algorithms select more. Only
in the first iterations DIRECT-l performs less computations, but later becomes slower
than PLOR. Figures 5-6 visualize sampled points by the PLOR and DIRECT algorithms
on these two problems during the first ten iterations. It can be seen that the DIRECT al-
gorithm samples wider and more evenly while the PLOR algorithm investigates better
the region around the minimum point.
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Table 1 The number of function evaluations (N
f

) and the error (e
k

) after a number of iterations (k)

PLOR DIRECT DIRECT-l DIRECT-m

k N

f

e

k

N

f

e

k

N

f

e

k

N

f

e

k

Li
ne

ar
fu

nc
tio

n

2 7 0.235702 7 0.235702 7 0.235702 7 0.078567
4 19 0.078567 19 0.078567 15 0.078567 19 0.078567
6 33 0.026189 37 0.026189 27 0.026189 37 0.026189
8 47 0.008730 65 0.008730 41 0.008730 65 0.008730
10 61 0.002910 91 0.002910 57 0.002910 91 0.002910
12 73 0.000970 121 0.000970 81 0.000970 121 0.000970
14 83 0.000323 161 0.000323 109 0.000323 161 0.000323
16 93 0.000108 203 0.000108 137 0.000108 203 0.000108
18 103 0.000036 253 0.000036 173 0.000036 253 0.000036
20 113 0.000012 313 0.000012 213 0.000012 313 0.000012

Q
ua

dr
at

ic
fu

nc
tio

n

2 7 0.962924 7 0.962924 7 0.962924 7 0.962924
4 19 0.238953 19 0.238953 15 0.238953 19 0.238953
6 33 0.076129 41 0.076129 27 0.076129 41 0.076129
8 47 0.030000 67 0.030000 45 0.030000 67 0.030000
10 61 0.012225 111 0.012225 67 0.012225 111 0.012225
12 73 0.002568 161 0.002568 95 0.002568 161 0.002568
14 83 0.001620 217 0.001620 127 0.001620 217 0.001620
16 93 0.000256 291 0.000256 167 0.000256 285 0.000256
18 103 0.000108 373 0.000108 215 0.000108 355 0.000108
20 113 0.000050 455 0.000050 267 0.000050 427 0.000050
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Fig. 4 The number of function evaluations after a number of iterations for linear and convex quadratic
functions

5 Numerical experiments

In this section, the performance of the PLOR algorithm is investigated on standard
global optimization test problems from [15] and on four truss optimization problems
commonly used in the literature [19,20,38]. For testing of the DIRECT algorithm we



Application of reduced-set Pareto-Lipschitzian optimization to truss optimization 13

0 0.33 0.66 1
0

0.33

0.66

1
PLOR

0 0.33 0.66 1
0

0.33

0.66

1
DIRECT

Fig. 5 Trial points generated by PLOR and DIRECT in the first 10 iterations when solving a two dimensional
linear problem
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Fig. 6 Trial points generated by PLOR and DIRECT in the first 10 iterations when solving a two dimensional
convex quadratic problem

used Finkel implementation in MATLAB [7]. The proposed PLOR algorithm along
with the other DIRECT modifications were implemented also in MATLAB.

5.1 Optimization of traditional test functions

First, the performance of the PLOR algorithm is compared with the original DIRECT
algorithm and two well-known modifications: DIRECT-l [11] and DIRECT-m [9]. The
criterion of the performance is defined as the number of function evaluations until
the algorithm stops generating a trial point x such that inequality (13) is satisfied.
A complete list of test problems with the dimension (n), the feasible region (D),
the numbers of local and global minimizers, and the global minimum is reported in
Table 2. This set of optimization problems was used to test the performance of the
original DIRECT algorithm [15]. Therefore, the same set is traditionally used as a
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Table 2 Description of test problems

Problem n D No. of local No. of global Global
minimizers minimizers minimum

Branin 2 [�5,10]⇥ [0,15] 3 3 0.398
Goldstein-Price 2 [�2,2]2 4 1 3.000
S-H. Camel B. 2 [�3,3]⇥ [�2,2] 6 2 �1.032
Shubert 2 [�10,10]2 760 18 �186.831
Hartman-3 3 [0,1]3 4 1 �3.863
Shekel-5 4 [0,10]4 5 1 �10.153
Shekel-7 4 [0,10]4 7 1 �10.403
Shekel-10 4 [0,10]4 10 1 �10.536
Hartman-6 6 [0,1]6 4 1 �3.322

Shekel-5, variant-1 4 [0,5]4 5 1 �10.153
Shekel-5, variant-2 4 [0,6]4 5 1 �10.153
Shekel-5, variant-3 4 [0,7]4 5 1 �10.153
Shekel-5, variant-4 4 [0,8]4 5 1 �10.153
Shekel-5, variant-5 4 [0,9]4 5 1 �10.153

benchmark in a lot of papers devoted to the DIRECT modifications [9,11,23–25,31,
34,37].

The obtained results presented in Table 3 reveal that the PLOR algorithm is very
competitive with the original DIRECT and two tested DIRECT modifications. PLOR
performed better solving 6 traditional test problems out of 9 with no help from ad-
justable parameter e which is used in other DIRECT-type algorithms. For the S-H.
Camel B. and Hartman-6 test problems PLOR performs close to the best results ob-
tained with the DIRECT-l and only for the Shekel-5 problem PLOR took much higher
amount of function evaluations comparing with the other DIRECT-type algorithms.
However, it was shown in [37], that for these standard test functions DIRECT exe-
cutes a very small number of trials until it generates a point in the neighborhood of
the global minimizer. Moreover, the initial feasible region can also have a signifi-
cant impact on this. Therefore, for further investigation, we took five variants of the
Shekel-5 test problem with the reduced feasible region (see Table 2). Generally, you
would not expect a completely different behavior on such reduced functions. How-
ever, first we observe that for all five variants of the Shekel-5 problem (see Table 3)
PLOR gives the best or almost the best results. Moreover, for the variant-2 of Shekel-5
problem DIRECT and DIRECT-m methods fails to solve the problem after the maxi-
mum budget of function evaluations (equal to 100,000) was reached.

In Table 4 we present results on the same test problems depending on different
pe values (13). From these results we can see that the PLOR strategy is promising not
only locating the global solution (which is the primary goal of global optimization
algorithms), but also to converging to these solutions with a high accuracy. The re-
sults reveal that for almost all these standard problems the PLOR algorithm converges
faster than the DIRECT and DIRECT-l algorithms. However, the most promising strat-
egy to obtain solutions with a very high degree of accuracy is to use DIRECT-m or
DIRECT-b [23].



Application of reduced-set Pareto-Lipschitzian optimization to truss optimization 15

Table 3 Comparison (based on the number of fuction evaluations) of PLOR, DIRECT, DIRECT-l and
DIRECT-m on the test problems

Problem PLOR DIRECT DIRECT-l DIRECT-m

Branin 85 195 119 225
Goldstein-Price 85 191 115 191
S-H. Camel B. 269 285 191 285
Shubert 1,641 2,967 2,043 3,663
Hartman-3 111 199 111 199
Shekel-5 6,857 155 147 155
Shekel-7 133 145 141 145
Shekel-10 133 145 139 145
Hartman-6 311 571 295 571

Shekel-5, variant-1 157 189 181 189
Shekel-5, variant-2 195 > 100,000 245 > 100,000
Shekel-5, variant-3 149 177 175 177
Shekel-5, variant-4 17 9 9 9
Shekel-5, variant-5 195 233 239 233

Fig. 7 The initial configuration of the structure

5.2 2D sizing and shape optimization: 37-bar truss

The planar truss of 37 bars [38] is investigated as an approximation of a simply
supported bridge. The initial configuration of the structure is shown in Fig. 7. In
the optimization process, nodes (3,5,7,9,11,13,15,17,19) of the upper chord can
be shifted vertically, while nodes (2,4,6,8,10,12,14,16,18) of the lower chord re-
main fixed. The loads of free nodes of the lower chord are F = 2.2481 kips (10 kN).
The Youngs modulus is E = 30.4579⇥ 106 psi (210 GPa), the material density is
r = 0.28179 lb/in3 (7800 kg/m3) for all elements and the allowable stresses are re-
stricted to [�34.809,34.809] ksi ([�240,240] MPa).

The topology of the structure is fixed. The nodal coordinates Y

j

, j = 3,5, . . . ,19
and the bar cross-sectional areas A

i

, i = 1, . . . ,37 are the optimization variables. The
nodal coordinates and member areas are linked to maintain the structural symmetry.
Thus, the vector of variables is reduced to the following 24 variables Y3, Y5, Y7, Y9,
Y11, A1, A3, A5, A7, A9, A11, A13, A15, A17, A19, A21, A23, A25, A27, A28, A30, A32, A34,
A36, where 0.0775 (in)2  A

i

 1.9375 (in)2,9.8425 (in)  Y

j

 127.9525 (in). The
optimal shape of a truss structure implies that all the specified nodal displacements
and bar stresses satisfy the prescribed constraints while the mass W is minimal. In
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Table 4 Comparison (based on the number of fuction evaluations) of PLOR, DIRECT, DIRECT-l and
DIRECT-m on the test problems depending on pe

Problem algorithm pe

0.01 0.001 0.0001 0.00001 0.000001

PLOR 85 115 159 159 4,719
Branin DIRECT 195 345 601 827 38,585

DIRECT-l 119 227 317 317 36,717
DIRECT-m 225 383 641 1,191 5,095
PLOR 85 95 105 503 3,653

Goldstein-Price DIRECT 191 241 305 1,479 10,437
DIRECT-l 115 153 221 1,171 9,741
DIRECT-m 191 321 535 1,113 3,395
PLOR 269 269 497 1,249 18,421

S-H. Camel B. DIRECT 285 285 933 3,009 46,729
DIRECT-l 191 191 413 2,611 22,419
DIRECT-m 285 285 505 777 2,173
PLOR 1,641 1,725 2,357 6,797 45,093

Shubert DIRECT 2,967 3,143 3,867 15,915 68,667
DIRECT-l 2,043 2,095 2,445 12,699 36,997
DIRECT-m 3,663 3,839 4,407 6,671 10,955
PLOR 111 9,391 21,917 26,507 26,507

Hartman-3 DIRECT 199 699 4,201 88,633 88,633
DIRECT-l 111 387 2,969 93,309 93,309
DIRECT-m 199 757 907 1,897 1,897
PLOR 6,857 6,929 6,929 78,527 >100,000

Shekel-5 DIRECT 155 255 255 53,525 >100,000
DIRECT-l 147 237 237 85,947 >100,000
DIRECT-m 155 255 255 513 777
PLOR 133 713 4,553 36,635 >100,000

Shekel-7 DIRECT 145 1,061 4,879 38,167 >100,000
DIRECT-l 141 1,061 1,197 91,951 >100,000
DIRECT-m 145 255 331 373 949
PLOR 133 711 4,709 >100,000 >100,000

Shekel-10 DIRECT 145 1,131 4,939 >100,000 >100,000
DIRECT-l 139 1,065 1,201 >100,000 >100,000
DIRECT-m 145 255 331 565 1,019
PLOR 311 503 71,039 >100,000 >100,000

Hartman-6 DIRECT 571 1,031 >100,000 >100,000 >100,000
DIRECT-l 295 691 >100,000 >100,000 >100,000
DIRECT-m 571 915 1,191 1,681 4,293

this paper, we minimize the function:

W (A,Y ) = r
n

Â
i=1

L

i

A

i

, (15)

and the stress restrictions are

|s
i

| s
max

, i = 1, . . . ,37. (16)
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Fig. 8 The optimum shape of the bridge

Tension and compression stresses are treated equally, i.e. local stability is not taken
into account. The cross-sections are restricted by the condition

A

min

i

 A

i

 A

max

i

, i = 1, . . . ,37, (17)

the node coordinates are restricted by the following inequalities

Y

min

j

 Y

j

 Y

max

j

, j = 3,5, . . . ,19. (18)

and the limit of the vertical displacement of the node j = 10 is as follows

|d10
y

| d
max

, (19)

where d
max

= 0.3937 in (10 mm). The displacement and stress constraints are in-
cluded using the penalty function k

l , where k = 10 is the penalty parameter and l is
the penalty indicator which is equal to zero if all the constraints are satisfied.

The optimal shape obtained with the PLOR algorithm is shown in Fig. 8 with the
respective Y -coordinates of the nodes. Figures 9 and 10 illustrate selection of reduced
Pareto optimal (using PLOR) and potentially optimal hyper-rectangles (using DIRECT)
for the 37-bar planar truss in 10th iteration. We see that, according to its definition
(12), the PLOR algorithm selects just two hyper-rectangles: one with the current min-
imal function value, the other from the largest radius set. Figure 9 illustrates a case
with several hyper-rectangles with the equal largest radius. The hyper-rectangle with
the smallest function value is preferred.

A comparison with the other DIRECT-type and with Tang [38] and Im.PSO [21]
algorithms is presented in Tables 5 and 6. The total quality of the optimized struc-
ture obtained with PLOR algorithm is 114.705 lb, which is less comparing with the
optimization results of DIRECT (179.746 lb), DIRECT-l (150.783 lb), DIRECT-m
(172.294 lb), Im.PSO [21] (152.714 lb), and [38] (170.770 lb). Convergence curves
of the PLOR and other tested DIRECT-type algorithms: DIRECT, DIRECT-l and
DIRECT-m is illustrated in Fig. 11. The curves show that in the beginning DIRECT-l

algorithm converges faster than the other, but from about 5,000 function evaluations
the best current minimum and the lowest converge curve is obtained with the PLOR

algorithm. Similar trends were observed regardless of the initial search space. Finally,
the constraints are satisfied by all the algorithms (see Table 6).
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Fig. 9 Geometric visualization of the reduced Pareto optimal hyper-rectangles (n = 24) by using the PLOR
algorithm for optimizing the 37-bar structure in 10th iteration
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Fig. 10 Geometric visualization of potentially optimal hyper-rectangles (n = 24) by using the DIRECT

algorithm for optimizing the 37-bar structure in 10th iteration
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Fig. 11 Convergence curves of the PLOR, DIRECT, DIRECT-l and DIRECT-m algorithms for the 37-bar
structure optimization

5.3 3D sizing optimization

5.3.1 25-bar space truss

The well-known spatial structure – electricity transmission tower composed of 25
truss elements and possessing 10 nodes (Fig. 12) is being optimized:

min W (A) = r
n

Â
i=1

L

i

A

i

s.t. d
min

 d
i

 d
max

i = 1, . . . ,3m,

s
min

 s
j

 s
max

,

A

min

 A

i

 A

max

j = 1, . . . ,n,

for all load cases. Here d
i

are the nodal displacements, s
j

are stresses in the trusses,
A

j

are cross-sectional areas, m is the number of free nodes, and n is the number of
elements.

The construction to be optimized has to meet the displacements and stress con-
straints for both load cases. The maximum displacements in all nodes in all directions
must not exceed ±0.35 in. The allowable tensile stresses in elements are 40 ksi, while
the compression stresses are shown in Table 7. Material density is r = 0.1 lb/in3, and
the Young’s modulus is E = 104 ksi. The optimized construction is symmetrical,
therefore all the 25 trusses are subdivided into 8 groups; their cross-sectional areas
form the vector of design parameters A. The construction is analyzed for 2 load cases
(Table 8). The values of truss cross-section areas are continual, the minimum value
being 0.01 in2.

Table 9 presents a comparison of the optimal solutions obtained with the four
DIRECT-type algorithms, also with the Schmit method [36] and three other (PSO,
PSOPC and HIPSO) from the paper [20]. In [20] a population of 50 individuals ant
maximum number of 3000 iterations was used. For this spatial truss structure, it takes
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Table 5 Comparison of algorithms on 37-bar planar truss optimization problem

Algorithm
Var. PLOR DIRECT DIRECT-l DIRECT-m Im.PSO Tang

Y3 27.349 29.528 26.449 29.528 19.547 20.008
Y5 49.222 55.774 49.216 55.774 35.339 35.606
Y7 62.345 68.898 62.339 68.898 46.701 46.382
Y9 68.178 68.898 66.713 68.898 53.953 52.996
Y11 68.880 68.898 67.362 68.898 55.386 53.677
A1 0.698 0.801 0.698 0.801 0.880 1.350
A3 0.078 0.388 0.078 0.181 0.246 0.080
A5 0.078 0.181 0.078 0.181 0.187 0.080
A7 0.698 0.801 0.698 0.801 1.178 1.269
A9 0.078 0.181 0.078 0.181 0.093 0.081
A11 0.078 0.181 0.078 0.181 0.087 0.078
A13 0.698 0.801 0.491 0.801 0.875 1.203
A15 0.078 0.181 0.078 0.181 0.136 0.078
A17 0.078 0.181 0.698 0.181 0.078 0.078
A19 0.698 0.801 0.698 0.801 0.876 1.169
A21 0.078 0.181 0.078 0.181 0.153 0.078
A23 0.078 0.181 0.146 0.181 0.105 0.079
A25 0.698 0.801 0.698 0.801 0.927 1.158
A27 0.078 0.388 0.491 0.181 0.318 0.078
A28 0.078 0.181 0.078 0.181 0.101 0.104
A30 0.078 0.181 0.078 0.181 0.078 0.078
A32 0.078 0.181 0.284 0.181 0.081 0.078
A34 0.078 0.181 0.078 0.181 0.079 0.080
A36 0.078 0.181 0.080 0.181 0.084 0.078
u10

y

0.393 0.392 0.394 0.392 0.391 0.318
(lb) 114.705 179.746 150.783 172.294 152.714 170.770

about 1000 iterations for the PSOPC and the PSO algorithms to converge, respec-
tively. However the HPSO algorithm takes only 50 iterations to converge. Moreover,
for this problem PSO algorithm did not fully converge when the maximum num-
ber of iterations is reached. Therefore to make the comparison as fair as possible all
DIRECT-type algorithms have been terminated after 50 · 3,000 = 150,000 function
evaluations.

The optimal weight with the PLOR algorithm is 546.80 lb and this value is very
close to the best values from [20]. Notice, that optimal weights obtained with all
DIRECT-type algorithms are similar: DIRECT (546.82 lb), DIRECT-l (549.26 lb),
DIRECT-m (546.82 lb). The convergence curves (see Fig. 13) show similar conver-
gence rates for all DIRECT-type algorithms. However in the beginning PLOR and
DIRECT-l algorithms converge slightly faster – as it was the case in the former prob-
lem.
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Table 6 Comparison of stresses (ksi) in all the bars

Algorithm
bar number PLOR DIRECT DIRECT-l DIRECT-m Im.PSO Tang

1 �25.42 �21.05 �26.01 �21.05 �25.85 �16.54
3 28.95 5.80 28.99 12.43 9.14 27.97
5 �2.79 �5.48 �10.43 �5.48 �2.02 �0.25
7 �23.59 �19.05 �23.83 �19.05 �18.32 �16.86
9 30.54 15.72 34.81 15.72 25.90 28.03
11 10.74 7.61 10.75 7.61 �2.11 2.61
13 �22.52 �17.75 �32.01 �17.75 �23.66 �17.27
15 20.56 6.22 20.59 6.22 17.48 27.11
17 16.23 21.48 2.72 21.48 �4.29 0.08
19 �22.57 �19.25 �22.96 �19.25 �22.84 �17.39
21 15.25 �6.22 8.32 �6.22 16.37 28.91
23 12.47 7.16 6.77 7.16 4.68 12.12
25 �23.03 �20.05 �23.55 �20.05 �21.56 �17.81
27 7.38 0.00 1.10 0.00 4.57 9.10
28 �3.04 �1.25 �1.51 �1.25 3.05 �0.50
30 �3.04 �1.25 �1.51 �1.25 3.98 �0.68
32 �5.33 �5.64 �2.78 �5.64 �0.38 �0.91
34 1.38 �1.25 �3.46 �1.25 �2.11 1.01
36 10.04 9.40 9.25 9.40 �4.54 1.08

Mean 14.99 10.09 14.28 10.44 11.20 11.91
St.dev. 9.58 7.62 11.57 7.56 9.47 10.96

Table 7 25-bar truss. Allowable stresses

No. of truss element 1 2-5 6-9 10-11 12-13 14-17 18-21 22-25

Allow. compressive 35.092 11.590 17.305 35.092 35.092 6.759 6.959 11.082
stresses (ksi)
Allowable tensile 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0
stresses (ksi)

Table 8 25-bar truss. Load cases

Case 1 (Kips) Case 2 (Kips)
No. of node F

x

F

y

F

z

F

x

F

y

F

z

1 0.0 20.0 �5.0 1.0 10.0 �5.0
2 0.0 �20.0 �5.0 0.0 10.0 �5.0
3 0.0 0.0 0.0 0.5 0.0 0.0
6 0.0 0.0 0.0 0.5 0.0 0.0
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Fig. 13 Convergence curve of the PLOR, DIRECT, DIRECT-l and DIRECT-m algorithms for the 25-bar
truss
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Fig. 12 The initial (on the left) and optimized (on the right) 25-bar spatial truss structure

Table 9 Optimal cross-sectional areas (in2) for the 25-bar truss found using different algorithms

Algorithm
No. PLOR DIRECT DIRECT-l DIRECT-m Schmit PSO PSOPC HIPSO

1 0.010 0.010 0.050 0.010 0.010 9.863 0.010 0.010
2 1.951 1.950 2.337 1.950 1.964 1.798 1.979 1.970
3 3.025 3.024 2.601 3.024 3.033 3.654 3.011 3.016
4 0.010 0.010 0.010 0.010 0.010 0.100 0.100 0.010
5 0.010 0.012 0.010 0.012 0.010 0.100 0.100 0.010
6 0.592 0.592 0.592 0.592 0.670 0.596 0.657 0.694
7 1.706 1.707 1.611 1.707 1.680 1.659 1.678 1.681
8 2.789 2.789 2.919 2.789 2.670 2.612 2.693 2.643

(lb) 546.80 546.82 549.26 546.82 545.22 627.08 545.27 545.19

5.3.2 72-bar space truss

The 72-bar spatial truss structure (see Fig. 14) was optimized by many researchers.
The dimensions, numbers of basic nodes, and trusses are shown in the figure, let us
note that a different numbering was used in [35]. The sizing optimization problem is
formulated in the same way as for 25-bar truss. The construction is analyzed for 2
load cases (Table 10). The limits for displacements of upper contour nodes (17-20)
for loading Case 2, and for the displacements of all free nodes (6-20) in all directions
for loading Case 1 are ±0.25 in. The allowable tensile and compression stresses are
±25 ksi. Material density is r = 0.1 lb/in3, Young modulus is E = 104 ksi. The sym-
metrical truss is considered, therefore all truss elements are divided into 16 groups.
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Fig. 14 The initial (on the left) and optimized (on the right) 72-bar space truss

The values of cross-sectional areas are continuous. The allowable minimal cross-
section of truss element is 0.1 in2.

Table 10 72-bar truss. Load cases

Case 1 (Kips) Case 2 (Kips)
No. of node F

x

F

y

F

z

F

x

F

y

F

z

17 5.0 5.0 �5.0 0.0 0.0 �5.0
18 0.0 0.0 0.0 0.0 0.0 �5.0
19 0.0 0.0 0.0 0.0 0.0 �5.0
20 0.0 0.0 0.0 0.0 0.0 �5.0

Table 11 presents a comparison of the optimal solutions obtained with the four
DIRECT-type algorithms, also with the Schmit method [36], Perez and Behdinan [35],
and three (PSO, PSOPC and AugPSO) from the recent paper [26]. As in the 25-
bar case, all DIRECT-type algorithms have been terminated after 150,000 function
evaluations.

The weights obtained with the PLOR and DIRECT-l algorithms are better than
with other two DIRECT-type algorithms and are close to the best known value ob-
tained with the AugPSO algorithm [26]. The convergence curves (see Fig. 15) again
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show better performance for the PLOR and DIRECT-l algorithms, especially at the
beginning.

Table 11 Optimal cross-sectional areas (in2) of the 72-bar truss found using different algorithms

Algorithm
No. PLOR DIR. DIR.-l DIR.-m Schmit Perez PSO PSOPC AugPSO

1 1.603 1.598 1.699 1.603 2.078 1.743 1.609 1.239 1.843
2 0.544 0.583 0.476 0.583 0.503 0.519 0.515 0.513 0.500
3 0.100 0.101 0.100 0.100 0.100 0.100 0.888 0.100 0.104
4 0.100 0.101 0.100 0.100 0.100 0.100 1.513 0.426 0.100
5 1.192 1.192 1.371 1.192 1.107 1.308 1.003 1.302 1.221
6 0.566 0.583 0.547 0.583 0.579 0.519 0.382 0.740 0.549
7 0.100 0.101 0.100 0.100 0.100 0.100 0.100 0.100 0.100
8 0.100 0.101 0.100 0.100 0.100 0.100 1.390 1.896 0.100
9 0.605 0.570 0.618 0.571 0.264 0.514 0.560 0.491 0.490

10 0.547 0.547 0.476 0.547 0.548 0.546 0.668 0.558 0.496
11 0.100 0.118 0.100 0.118 0.100 0.100 0.220 0.100 0.103
12 0.122 0.118 0.112 0.118 0.151 0.109 1.842 0.127 0.150
13 0.154 0.154 0.153 0.154 0.158 0.162 0.120 0.157 0.156
14 0.583 0.584 0.582 0.583 0.594 0.509 0.665 0.490 0.575
15 0.315 0.261 0.405 0.261 0.341 0.497 0.527 0.404 0.433
16 0.516 0.512 0.655 0.508 0.608 0.562 0.413 0.950 0.522
(lb) 383.70 386.98 382.34 387.00 388.63 381.91 576.69 472.59 381.62
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Fig. 15 Convergence curve of the PLOR, DIRECT, DIRECT-l and DIRECT-m algorithms for the 72-bar
truss

5.4 2D sizing and topology optimization: 10 nodes

The 10-node truss [5,19] is optimized starting from the initial node connection
scheme “all-to-all” (see Fig. 16). The sizing and topology optimization problem is
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considered with elements’ cross-section areas as the design parameters. The minimal
truss mass is sought. The problem is formulated in the following way:

min W (A,XY,Con) = r ÂL

i

A

0
i

s.t. C1: Truss is acceptable to the user
C2: D-o-F  0,
C3: d

min

 d
j

 d
max

, j = 1, . . . ,2m,

C4: s
min

 s
i

 s
max

,

C5: A

min

 A

i

 A

max

i = 1, . . . ,n,

where XY are coordinates of the nodes, Con are connections between nodes, and A

0
i

are cross-section areas of elements for topologically modified structure:

A

0
i

=

(
A

i

if A

i

� e
0 if A

i

< e,

where e is the critical area. The optimized structure has to retain the initial conditions
and loadings, and has to be kinematically stable. Also, the structure has to correspond
to the constraints on the displacements, stresses, and the cross-section areas. In case
of constraints violation a penalty to the objective function value is given as:

F

pen

=

(
k

l if C1 or C2 is violated,
W + k

l ·Â p

i

otherwise,

where penalty parameter k = 10, penalty indicator l = 9 for C1, l = 8 for C2, and
l = 5 for C3-C4, Â p

i

is sum of maximum normalized penalties due to stresses’ and
displacements’ violations. If all constraints are met Â p

i

= 0.
The optimization parameters are as follows: loadings on nodes 7, 8, 9 are

F

y

= �105 lb (see Fig. 16), Young’s modulus E = 104 ksi, density r = 0.1 lb/in3.
The allowable tensile and compression stresses are ±25 ksi, maximal allowable dis-
placements in active nodes are 2 in, and allowable cross-section areas are ±1 in2,
e = 0.09 in2. The symmetrical structure is expected, therefore all the truss elements
are divided into 25 groups; the cross-section areas of the elements comprise the de-
sign parameters vector A.

Table 12 presents a comparison of the optimal solutions obtained after N

f

itera-
tions with four DIRECT-type algorithms and the mean value with the standard devia-
tion for the SCGA [19].

First, we notice that the optimal weights with all the DIRECT-type algorithms
are equal to 62.004 lb. The obtained final structure is shown in Fig. 17. Second, all
these weights were found in the early phase of optimization (up to N

f

= 1,000 func-
tion evaluations), but later did not improve with neither DIRECT-type algorithm. This
probably can be explained by the previously mentioned fact that the DIRECT-type al-
gorithms often spend an excessive number of function evaluations on problems with
many local minima exploring suboptimal local minima, thereby delaying discovery
of the global minimum. Even so, the value obtained with the DIRECT-type algorithms
is comparable with the average outcome of the SCGA.
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Fig. 16 Initial 10-nodes 45-truss elements structure

Fig. 17 The final structure obtained from initial 10-nodes

Table 12 Optimal weighs (lb) of the 10 node ground structure after N

f

function evaluations

Algorithm
N

f

PLOR DIRECT DIRECT-l DIRECT-m SCGA

1,000 62.004 62.004 62.004 62.004 221.67 ± 36.6698
5,000 62.004 62.004 62.004 62.004 141.15 ± 28.6506
10,000 62.004 62.004 62.004 62.004 105.09 ± 15.8803
20,000 62.004 62.004 62.004 62.004 87.91 ± 14.4118

6 Conclusions

In this paper investigation of the Reduced-set Pareto-Lipschitzian Optimization
(PLOR) algorithm has been performed. The advantage of the algorithm is absence
of adjustable parameters and trivial selection of a reduced subset of Pareto optimal
hyper-rectangles. Experimental investigation has been performed solving traditional
test problems for the DIRECT-type algorithms as well as truss optimization problems.
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The results of experiments on the standard problems show that the PLOR algorithm
performs well on locating the global solutions and converging to these solutions with
a high accuracy. The performance of all DIRECT-type algorithms on truss optimiza-
tion problems is quite similar. They compete well with heuristic algorithms published
recently which are often recommended to applied engineering optimization problems.
It is worth to note that the PLOR and DIRECT-l algorithms in large part of experi-
ments converge slightly faster than other algorithms, especially at the beginning. It
can be concluded that DIRECT-type algorithms with proved convergence and good
experimental performance may be recommended for solution of truss optimization
problems.
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