179 research outputs found

    Metabolism of Zearalenone in the Course of Beer Fermentation

    Get PDF
    Zearalenone (ZON) is a mycotoxin with estrogenic activity, produced by members of Fusarium species, and is found worldwide in a number of cereal crops. It is known to have four active metabolites (α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalanol (α-ZAL), and β-zearalanol (β-ZAL)). A highly sensitive analytical method using liquid chromatography/tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) has been established and validated in order to analyze ZON and its metabolites in beer and malt samples. The metabolism of ZON in the course of beer fermentation was further characterized using the artificially contaminated wort by this established method. In the fermented sample, 85.9% of ZON was converted to β-ZOL, which has lower estrogenic activity than that of ZON. These findings indicate that the health risk to humans due to ZON in beer is reduced during the fermentation process

    Origin of diverse phosphorylation patterns in the ERBB system

    Get PDF
    シグナル伝達による多様な細胞応答の起源 --実験と理論の融合による反応特性の決定. 京都大学プレスリリース. 2022-01-21.Intercellular signals induce various cellular responses, including growth, proliferation, and differentiation, via the dynamic processes of signal transduction pathways. For cell fate decisions, ligand-binding induces the phosphorylation of ERBB receptors, which in turn activate downstream molecules. The ERBB family includes four subtypes, which diverged through two gene duplications from a common ancestor. Differences in the expression patterns of the subtypes have been reported between different organs in the human body. However, how these different expression properties influence the diverse phosphorylation levels of ERBB proteins is not well understood. Here we study the origin of the phosphorylation responses by experimental and mathematical analyses. The experimental measurements clarified that the phosphorylation levels heavily depend on the ERBB expression profiles. We developed a mathematical model consisting of the four subtypes as monomers, homodimers, and heterodimers and estimated the rate constants governing the phosphorylation responses from the experimental data. To understand the origin of the diversity, we analyzed the effects of the expression levels and reaction rates of the ERBB subtypes on the diversity. The difference in phosphorylation rates between ERBB subtypes showed a much greater contribution to the diversity than did the dimerization rates. This result implies that divergent evolution in phosphorylation reactions rather than in dimerization reactions after whole genome duplications was essential for increasing the diversity of the phosphorylation responses

    Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos

    Get PDF
    動く分子と動かない分子が協調して、安定した位置情報を素早く作り出す. 京都大学プレスリリース. 2021-06-04.The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations

    Characterization of fumonisin A-series by high-resolution liquid chromatography-orbitrap mass spectrometry

    Get PDF
    Fumonisin A-series (FAs) in a reference material of corn sample that was naturally contaminated with fumonisins was characterized using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitap MS). Peaks for fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3), in addition to three peaks corresponding to unknown compounds I, II, and III, were detected in the chromatogram for the corn sample. Fragment ion analysis for FB1, FB2, and FB3 showed that while the ions formed at m/z values of 200-800 were similar to those formed by the cleavage of the tricarballylic acids and the hydroxyl groups, the fragmentation patterns at m/z values of 50-200 varied depending on the hydroxyl group locations in the compounds. Fragment ion analysis of compounds I-III revealed structural similarities to FBs, only differing by an additional C2H2O in the unknown compounds. Using these results and by comparing the product ion mass spectra of compound I with fumonisin A1 (FA1) synthesized from FB1 standards, compounds I-III were hypothesized to be N-acetyl analogs of FBs: fumonisins A1 (FA1), A2 (FA2), and A3 (FA3). The method for determining concentrations was validated with FA1, FB1, FB2, and FB3 standards and applied to analyze the reference material. The FB1, FB2, and FB3 analytical levels were within acceptance limits and the amount of FA1 in the material was ~15% of FB1 amount at 4.2 mg/kg. © 2014 by the authors; licensee MDPI, Basel, Switzerland

    IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay

    Get PDF
    炎症が制御される新たなメカニズムの解明 --タンパク質「14-3-3」を介した新たなRegnase-1の抑制機序--. 京都大学プレスリリース. 2021-10-19.Regnase-1 is an endoribonuclease crucial for controlling inflammation by degrading mRNAs encoding cytokines and inflammatory mediators in mammals. However, it is unclear how Regnase-1-mediated mRNA decay is controlled in interleukin (IL)-1β- or Toll-like receptor (TLR) ligand-stimulated cells. Here, by analyzing the Regnase-1 interactome, we found that IL-1β or TLR stimulus dynamically induced the formation of Regnase-1-β-transducin repeat-containing protein (βTRCP) complex. Importantly, we also uncovered a novel interaction between Regnase-1 and 14-3-3 in both mouse and human cells. In IL-1R/TLR-stimulated cells, the Regnase-1-14-3-3 interaction is mediated by IRAK1 through a previously uncharacterized C-terminal structural domain. Phosphorylation of Regnase-1 at S494 and S513 is critical for Regnase-1-14-3-3 interaction, while a different set of phosphorylation sites of Regnase-1 is known to be required for the recognition by βTRCP and proteasome-mediated degradation. We found that Regnase-1-14-3-3 and Regnase-1-βTRCP interactions are not sequential events. Rather, 14-3-3 protects Regnase-1 from βTRCP-mediated degradation. On the other hand, 14-3-3 abolishes Regnase-1-mediated mRNA decay by inhibiting Regnase-1-mRNA association. In addition, nuclear-cytoplasmic shuttling of Regnase-1 is abrogated by 14-3-3 interaction. Taken together, the results suggest that a novel inflammation-induced interaction of 14-3-3 with Regnase-1 stabilizes inflammatory mRNAs by sequestering Regnase-1 in the cytoplasm to prevent mRNA recognition

    Pathological significance and prognostic role of microvessel density, evaluated using CD31, CD34, and CD105 in prostate cancer patients after radical prostatectomy with neoadjuvant therapy

    Get PDF
    BACKGROUND. Neoadjuvant hormonal therapy (NHT) is performed to improve the outcome in organ-confined prostate cancer. However, there is little information regarding the relationship between angiogenesis and NHT. The aim of this study was to identify a suitable method to evaluate the angiogenic status of tissue, and to determine the prognostic value of this method for biochemical recurrence in patients who had undergone radical prostatectomy after NHT.METHODS. We analyzed 108 formalin-fixed specimens from patients treated by radical prostatectomy. NHT was administered in 48 patients (52.9%) and 60 patients who had a similar Gleason score and pT stage were selected as a non-NHT treated control group. Microvessel density (MVD) was measured using anti-CD31, anti-CD34, and anti-CD105 antibodies. The expressions of vascular endothelial growth factor (VEGF)-A and thrombospondin (TSP)-1 were also evaluated by immunohistochemistry. The prognostic value of CD31-, CD34-, and CD105-MVD for biochemical recurrence was investigated.RESULTS. The mean/SD of CD105-MVD in the NHT group (13.3/4.7) was significantly (P<0.001) lower than that in the non-NHT group (125.8/7.3). In the NHT group, CD105-MVD was associated with pT stage and it was positively correlated with VEGF-A expression (r=0.56, P<0.001) and negatively correlated with TSP-1 expression (r=0.42, P=0.003). CD105-MVD was identified as a significant predictor of biochemical recurrence (BCR) in patients treated with NHT (log rank test, P<0.001). Although CD31- and CD34-MVD were significantly associated with pT stage or Gleason score in non-NHT group, they were not associated with pathological features and BCR in NHT group.CONCLUSIONS. Our results indicate that CD105-MVD reflects the angiogenic conditions in prostate cancer tissues treated with NHT. CD105-MVD was also identified as a significant and independent predictor of biochemical recurrence in prostate cancer patients who underwent radical prostatectomy with NHT

    A method for simultaneous determination of 20 fusarium toxins in cereals by high-resolution liquid chromatography-orbitrap mass spectrometry with a pentafluorophenyl column

    Get PDF
    A high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) method was developed for simultaneous determination of 20 Fusarium toxins (nivalenol, fusarenon-X, deoxynivalenol, 3-acetyl deoxynivalenol, 15-acetyl deoxynivalenol, HT-2 toxin, T-2 toxin, neosolaniol, diacetoxyscirpenol, fumonisin B1, fumonisin B2, fumonisin B3, fumonisin A1, fumonisin A2, fumonisin A3, zearalenone, α-zearalenol, β-zearalenol, α-zearalanol, and β-zearalanol) in cereals. The separation of 20 Fusarium toxins with good peak shapes was achieved using a pentafluorophenyl column, and Orbitrap MS was able to detect accurately from cereal matrix components within ±0.77 ppm. The samples were prepared using a QuEChERS kit for extraction and a multifunctional cartridge for purification. The linearity, repeatability, and recovery of the method were >0.9964, 0.8%–14.7%, and 71%–106%, respectively. Using this method, an analysis of 34 commercially available cereals detected the presence of deoxynivalenol, 15-acetyl deoxynivalenol, fumonisin B1, fumonisin B2, fumonisin B3, fumonisn A1, fumonisin A2, fumonisin A3, and zearalenone in corn samples with high concentration and frequency. Trichothecenes was detected from wheat samples with high frequency; in particular, the concentration of deoxynivalenol was high. Conversely, α-zearalenol, β-zearalenol, α-zearalanol, and β-zearalanol were not detected in any of the samples. © 2015 by the authors; licensee MDPI, Basel, Switzerland

    Identification and quantification of fumonisin A1, A2, and A3 in corn by high-resolution liquid chromatography-Orbitrap mass spectrometry

    Get PDF
    Three compounds, hypothesized as fumonisin A1 (FA1), fumonisin A2 (FA2), and fumonisin A3 (FA3), were detected in a corn sample contaminated with mycotoxins by high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS). One of them has been identified as FA1 synthesized by the acetylation of fumonisin B1 (FB1), and established a method for its quantification. Herein, we identified the two remaining compounds as FA2 and FA3, which were acetylated fumonisin B2 (FB2) and fumonisin B3 (FB3), respectively. Moreover, we examined a method for the simultaneous analysis of FA1, FA2, FA3, FB1, FB2, and FB 3. The corn samples were prepared by extraction using a QuEChERS kit and purification using a multifunctional cartridge. The linearity, recovery, repeatability, limit of detection, and limit of quantification of the method were >0.99, 82.9%–104.6%, 3.7%–9.5%, 0.02–0.60 μg/kg, and 0.05–1.98 μg/kg, respectively. The simultaneous analysis of the six fumonisins revealed that FA1, FA2, and FA3 were present in all corn samples contaminated with FB1, FB2, and FB 3. The results suggested that corn marketed for consumption can be considered as being contaminated with both the fumonisin B-series and with fumonisin A-series. This report presents the first identification and quantification of FA1, FA2, and FA3 in corn samples. © 2015 by the authors; licensee MDPI, Basel, Switzerland

    Usability of detecting delivery errors during treatment of prostate VMAT with a gantry-mounted transmission detector

    Get PDF
    Volumetric‐modulated arc therapy (VMAT) requires highly accurate control of multileaf collimator (MLC) movement, rotation speed of linear accelerator gantry, and monitor units during irradiation. Pretreatment validation and monitoring of these factors during irradiation are necessary for appropriate VMAT treatment. Recently, a gantry mounted transmission detector “Delta4 Discover® (D4D)” was developed to detect errors in delivering doses and dose distribution immediately after treatment. In this study, the performance of D4D was evaluated. Simulation plans, in which the MLC position was displaced by 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm from the clinically used original plans, were created for ten patients who received VMAT treatment for prostate cancer. Dose deviation (DD), distance‐to‐agreement (DTA), and gamma index analysis (GA) for each plan were evaluated by D4D. These results were compared to the results (DD, DTA and GA) measured by Delta4 Phantom + (D4P). We compared the deviations between the planned and measured values of the MLC stop positions A‐side and B‐side in five clinical cases of prostate VMAT during treatment and measured the GA values. For D4D, when the acceptable errors for DD, DTA, and GA were determined to be ≤3%, ≤2 mm, and ≤3%/2 mm, respectively, the minimum detectable errors in the MLC position were 2.0, 1.5, and 1.5 mm based on DD, DTA, and GA respectively. The corresponding minimum detectable MLC position errors were 2.0, 1.0, and 1.5 mm, respectively, for D4P. The deviation between the planned and measured position of MLC stopping point of prostate VMAT during treatment was stable at an average of −0.09 ± 0.05 mm, and all GA values were above 99.86%. In terms of delivering doses and dose distribution of VMAT, error detectability of D4D was comparable to that of D4P. The transmission‐type detector “D4D” is thus suitable for detecting delivery errors during irradiation

    Xanthogranulomatous Pyelonephritis with Incomplete Double Ureter

    Get PDF
    Introduction. Xanthogranulomatous pyelonephritis (XGP) is a type of chronic renal inflammation that usually occurs in immunocompromised middle-aged women with chronic urinary tract infection or ureteral obstruction induced by the formation of ureteral stones. XGP with an incomplete double ureter is extremely rare. Case Presentation. A 76-year-old woman was referred to our department to undergo further examination for a left renal tumor that was detected by ultrasonography. Dynamic contrast computed tomography (CT) revealed an enhanced tumor in the upper renal parenchyma. Laparoscopic radical nephrectomy was performed based on a preoperative diagnosis of renal cell carcinoma. Histological sections showed the aggregation of foam cells; thus, XGP was diagnosed. Conclusion. We herein report a rare case of XGP in the upper pole of the kidney, which might have been associated with an incomplete double ureter
    corecore