322 research outputs found

    Zero Poynting vector Eβˆ₯H Beltrami field cylindrical cavity resonators

    Get PDF
    In this paper, we present novel cylindrical cavity resonators accommodating spatially and temporally zero Poynting vector Beltrami standing waves with the parallel electric and magnetic fields (Eβˆ₯H). We introduce the special boundary conditions, i.e., longitudinal electromagnetic conductor (LEMC) on which zero longitudinal electromagnetic components are enforced and circumferential electromagnetic conductor (CEMC) on which zero circumference electromagnetic components are enforced in an axisymmetric waveguide system, and show that the zero Poynting vector Eβˆ₯H Beltrami standing wave is generated as a superposition of dual degenerated axisymmetric TM and TE standing waves in a cylindrical resonator using the LEMC and CEMC boundary conditions. We present physical implementation methods of the LEMC and CEMC boundary conditions composed of the circumferentially arranged corrugations and the concentrically aligned cylindrical thin fins, respectively. In addition, we numerically demonstrate the Beltrami standing field generation and reveal its peculiar electromagnetic properties: the spatially and temporally Eβˆ₯H with zero Poynting vector distribution, identical electric and magnetic energy density distributions, and zero local reactive energy flow

    Metabolism of Zearalenone in the Course of Beer Fermentation

    Get PDF
    Zearalenone (ZON) is a mycotoxin with estrogenic activity, produced by members of Fusarium species, and is found worldwide in a number of cereal crops. It is known to have four active metabolites (Ξ±-zearalenol (Ξ±-ZOL), Ξ²-zearalenol (Ξ²-ZOL), Ξ±-zearalanol (Ξ±-ZAL), and Ξ²-zearalanol (Ξ²-ZAL)). A highly sensitive analytical method using liquid chromatography/tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) has been established and validated in order to analyze ZON and its metabolites in beer and malt samples. The metabolism of ZON in the course of beer fermentation was further characterized using the artificially contaminated wort by this established method. In the fermented sample, 85.9% of ZON was converted to Ξ²-ZOL, which has lower estrogenic activity than that of ZON. These findings indicate that the health risk to humans due to ZON in beer is reduced during the fermentation process

    Quarter-wavelength Eβ€–H Beltrami cavity resonators

    Get PDF
    In this paper, we present the design and implementation methods of quarter-wavelength resonators accommodating Beltrami standing waves with parallel electric and magnetic (Eβ€–H) fields. The resonator is bounded by the quarter-wavelength longitudinal electromagnetic conductor (LEMC), the circumferential electromagnetic conductor (CMEC), and the radial electromagnetic conductor (REMC). The LEMC, CEMC, and REMC boundaries are artificially implemented by the circumferentially aligned corrugation, concentrically aligned circular fins, and axisymmetrically aligned radial fins, respectively. The coupling control methods by introducing slots in the CEMC and REMC with the external TM01 and TE01 circular waveguides are presented. We design the quarter-wavelength resonators with the implemented LEMC, CEMC, and REMC boundaries with controlled external couplings and numerically demonstrate their Eβ€–H properties, which confirms the validity of the proposed design method

    A novel LIM protein Cal promotes cardiac differentiation by association with CSX/NKX2-5

    Get PDF
    The cardiac homeobox transcription factor CSX/NKX2-5 plays an important role in vertebrate heart development. Using a yeast two-hybrid screening, we identified a novel LIM domain–containing protein, named CSX-associated LIM protein (Cal), that interacts with CSX/NKX2-5. CSX/NKX2-5 and Cal associate with each other both in vivo and in vitro, and the LIM domains of Cal and the homeodomain of CSX/NKX2-5 were necessary for mutual binding. Cal itself possessed the transcription-promoting activity, and cotransfection of Cal enhanced CSX/NKX2-5–induced activation of atrial natriuretic peptide gene promoter. Cal contained a functional nuclear export signal and shuttled from the cytoplasm into the nucleus in response to calcium. Accumulation of Cal in the nucleus of P19CL6 cells promoted myocardial cell differentiation accompanied by increased expression levels of the target genes of CSX/NKX2-5. These results suggest that a novel LIM protein Cal induces cardiomyocyte differentiation through its dynamic intracellular shuttling and association with CSX/NKX2-5

    Characterization of fumonisin A-series by high-resolution liquid chromatography-orbitrap mass spectrometry

    Get PDF
    Fumonisin A-series (FAs) in a reference material of corn sample that was naturally contaminated with fumonisins was characterized using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitap MS). Peaks for fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3), in addition to three peaks corresponding to unknown compounds I, II, and III, were detected in the chromatogram for the corn sample. Fragment ion analysis for FB1, FB2, and FB3 showed that while the ions formed at m/z values of 200-800 were similar to those formed by the cleavage of the tricarballylic acids and the hydroxyl groups, the fragmentation patterns at m/z values of 50-200 varied depending on the hydroxyl group locations in the compounds. Fragment ion analysis of compounds I-III revealed structural similarities to FBs, only differing by an additional C2H2O in the unknown compounds. Using these results and by comparing the product ion mass spectra of compound I with fumonisin A1 (FA1) synthesized from FB1 standards, compounds I-III were hypothesized to be N-acetyl analogs of FBs: fumonisins A1 (FA1), A2 (FA2), and A3 (FA3). The method for determining concentrations was validated with FA1, FB1, FB2, and FB3 standards and applied to analyze the reference material. The FB1, FB2, and FB3 analytical levels were within acceptance limits and the amount of FA1 in the material was ~15% of FB1 amount at 4.2 mg/kg. Β© 2014 by the authors; licensee MDPI, Basel, Switzerland

    Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant

    Get PDF
    Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant.BackgroundPolycystic kidney disease (PKD) is a common hereditary disease. A number of murine and zebrafish mutants have been generated and used for the study of PKD as metanephric and pronephric models, respectively. Here, we report a medaka (Oryzias latipes) mutant that develops numerous cysts in the kidney in adulthood fish in an autosomal-recessive manner as a mesonephric model of PKD.MethodsThe phenotypes of the medaka pc mutant were described in terms of morphologic, histologic, and ultrastructural features. The pc see-through stock was produced by crossing a pc mutant and a fish from the see-through stock and used for observing the kidney through the transparent body wall of a live fish.ResultsThe mutant developed bilateral massive enlargement of the kidney in adulthood. They sexually matured normally within 2 months of age and died within 6 months of age. The affected kidney was occupied by numerous, fluid-filled cysts, which were lined by attenuated squamous epithelial cells. Developmentally, cystic formation began in the pronephros in 10-day-old fry and in the mesonephros in 20-day-old fry at the microscopic level. The pc see-through stock was useful in observing disease progression in live fish.ConclusionThe kidney disorder that develops in the medaka pc mutant is a mesonephric counterpart of PKD, particularly an autosomal-dominant PKD, based on its morphologic, histologic, and ultrastructural features, and slow progression

    Rapidly Destructive Arthrosis of Bilateral Humeral Heads Caused by Subchondral Insufficiency Fracture

    Get PDF
    The bilateral shoulder pain of an 81-year-old Japanese woman due to falls persisted despite celecoxib treatment, and plain X-rays later showed bilateral collapsed humeral heads. After ruling out osteoarthritis, infectious arthritis, crystal-induced arthritis, neuropathic arthropathy, and osteonecrosis, we diagnosed bilateral shoulder joint rapidly destructive arthrosis (RDA). Lumbar bone mineral density showed very low T-score (βˆ’4.1). Primary osteoporosis was observed. Histology of biopsied humeral head indicated the features of fracture healing process: callus formation and osteoclasts without empty lacunae. Her history thus included an insufficiency fracture due to severe osteoporosis. Bilateral humeral head replacement was performed; her shoulder joint function improved. This case is extremely rare in that RDA was caused by simultaneous bilateral shoulder joint collapse within a very short time, with minimal or low mechanical stress and severe osteoporosis

    Activity of Rho-family GTPases during cell division as visualized with FRET-based probes

    Get PDF
    Rho-family GTPases regulate many cellular functions. To visualize the activity of Rho-family GTPases in living cells, we developed fluorescence resonance energy transfer (FRET)–based probes for Rac1 and Cdc42 previously (Itoh, R.E., K. Kurokawa, Y. Ohba, H. Yoshizaki, N. Mochizuki, and M. Matsuda. 2002. Mol. Cell. Biol. 22:6582–6591). Here, we added two types of probes for RhoA. One is to monitor the activity balance between guanine nucleotide exchange factors and GTPase-activating proteins, and another is to monitor the level of GTP-RhoA. Using these FRET probes, we imaged the activities of Rho-family GTPases during the cell division of HeLa cells. The activities of RhoA, Rac1, and Cdc42 were high at the plasma membrane in interphase, and decreased rapidly on entry into M phase. From after anaphase, the RhoA activity increased at the plasma membrane including cleavage furrow. Rac1 activity was suppressed at the spindle midzone and increased at the plasma membrane of polar sides after telophase. Cdc42 activity was suppressed at the plasma membrane and was high at the intracellular membrane compartments during cytokinesis. In conclusion, we could use the FRET-based probes to visualize the complex spatio-temporal regulation of Rho-family GTPases during cell division

    Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190

    Get PDF
    The enzymatic recycling of polyethylene terephthalate (PET) can be a promising approach to tackle the problem of plastic waste. The thermostability and activity of PET-hydrolyzing enzymes are still insufficient for practical application. Pretreatment of PET waste is needed for bio-recycling. Here, we analyzed the degradation of PET films, packages, and bottles using the newly engineered cutinase Cut190. Using gel permeation chromatography and high-performance liquid chromatography, the degradation of PET films by the Cut190 variant was shown to proceed via a repeating two-step hydrolysis process; initial endo-type scission of a surface polymer chain, followed by exo-type hydrolysis to produce mono/bis(2-hydroxyethyl) terephthalate and terephthalate from the ends of fragmented polymer molecules. Amorphous PET powders were degraded more than twofold higher than amorphous PET film with the same weight. Moreover, homogenization of post-consumer PET products, such as packages and bottles, increased their degradability, indicating the importance of surface area for the enzymatic hydrolysis of PET. In addition, it was required to maintain an alkaline pH to enable continuous enzymatic hydrolysis, by increasing the buffer concentration (HEPES, pH 9.0) depending on the level of the acidic products formed. The cationic surfactant dodecyltrimethylammonium chloride promoted PET degradation via adsorption on the PET surface and binding to the anionic surface of the Cut190 variant. The Cut190 variant also hydrolyzed polyethylene furanoate. Using the best performing Cut190 variant (L136F/Q138A/S226P/R228S/D250C-E296C/Q123H/N202H/K305del/L306del/N307del) and amorphous PET powders, more than 90 mM degradation products were obtained in 3 days and approximately 80 mM in 1 day

    A method for simultaneous determination of 20 fusarium toxins in cereals by high-resolution liquid chromatography-orbitrap mass spectrometry with a pentafluorophenyl column

    Get PDF
    A high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) method was developed for simultaneous determination of 20 Fusarium toxins (nivalenol, fusarenon-X, deoxynivalenol, 3-acetyl deoxynivalenol, 15-acetyl deoxynivalenol, HT-2 toxin, T-2 toxin, neosolaniol, diacetoxyscirpenol, fumonisin B1, fumonisin B2, fumonisin B3, fumonisin A1, fumonisin A2, fumonisin A3, zearalenone, Ξ±-zearalenol, Ξ²-zearalenol, Ξ±-zearalanol, and Ξ²-zearalanol) in cereals. The separation of 20 Fusarium toxins with good peak shapes was achieved using a pentafluorophenyl column, and Orbitrap MS was able to detect accurately from cereal matrix components within Β±0.77 ppm. The samples were prepared using a QuEChERS kit for extraction and a multifunctional cartridge for purification. The linearity, repeatability, and recovery of the method were >0.9964, 0.8%–14.7%, and 71%–106%, respectively. Using this method, an analysis of 34 commercially available cereals detected the presence of deoxynivalenol, 15-acetyl deoxynivalenol, fumonisin B1, fumonisin B2, fumonisin B3, fumonisn A1, fumonisin A2, fumonisin A3, and zearalenone in corn samples with high concentration and frequency. Trichothecenes was detected from wheat samples with high frequency; in particular, the concentration of deoxynivalenol was high. Conversely, Ξ±-zearalenol, Ξ²-zearalenol, Ξ±-zearalanol, and Ξ²-zearalanol were not detected in any of the samples. Β© 2015 by the authors; licensee MDPI, Basel, Switzerland
    • …
    corecore