39 research outputs found

    Elaborated Modeling of Synchrotron Motion in Vlasov-Fokker-Planck Solvers

    Get PDF
    Solving the Vlasov-Fokker-Planck equation is a well-tested approach to simulate dynamics of electron bunches self-interacting with their own wake-field. Typical implementations model the dynamics of a charge density in a damped harmonic oscillator, with a small perturbation due to collective effects. This description imposes some limits to the applicability: Because after a certain simulation time coherent synchrotron motion will be damped down, effectively only the incoherent motion is described. Furthermore – even though computed - the tune spread is typically masked by the use of a charge density instead of individual particles. As a consequence, some effects are not reproduced. In this contribution, we present methods that allow to consider single-particle motion, coherent synchrotron oscillations, non-linearities of the accelerating voltage, higher orders of the momentum compaction factor, as well as modulations of the accelerating voltage. We also provide exemplary studies – based on the KIT storage ring KARA (KArlsruhe Research Accelerator) - to show the potentiality of the methods

    Towards Direct Detection of the Shape of CSR Pulses with Fast THz Detectors

    Get PDF
    Coherent synchrotron radiation (CSR) is emitted when the emitting structure is equal to or smaller than the observed wavelength. Consequently, these pulses are very short and most detectors respond with their impulse response, regardless of the pulse length and shape. Here we present single-shot measurements performed at the Karlsruhe Research Accelerator (KARA) using a fast real-time oscilloscope and Schottky barrier detectors sensitive in the sub-THz range. The time response of this setup to CSR pulses emitted by electron bunches during the microbunching instability is shown to be sensitive to the shape of the electron bunch. Our results show how, in the future, the shape of electron bunches can be directly measured using a straightforward setup

    Status of Negative Momentum Compaction Operation at KARA

    Get PDF
    For future synchrotron light sources different operation modes are of interest. Therefore various modes are currently being tested at the Karlsruhe Research Accelerator (KARA) including optics for a negative momentum compaction factor. These optics have been calculated and are under commissioning at KARA. Additionally, studies about expected collective effects in this regime are being performed, including the head-tail and microbunching instabilities. In this contribution we will present the status of operation in the negative momentum compaction regime and discuss expected collective effects that will be studied in this context

    Beam Dynamics Observations at Negative Momentum Compaction Factors at KARA

    Get PDF
    For the development of future synchrotron light sources new operation modes often have to be considered. One such mode is the operation with a negative momentum compaction factor to provide the possibility of increased dynamic aperture. For successful application in future light sources, the influence of this mode has to be investigated. At the KIT storage ring KARA (Karlsruhe Research Accelerator), operation with negative momentum compaction has been implemented and the dynamics can now be investigated. Using a variety of high-performance beam diagnostics devices it is possible to observe the beam dynamics under negative momentum compaction conditions. This contribution presents different aspects of the results of these investigations in the longitudinal and transversal plane

    Simulation of the Effect of Corrugated Structures on the Longitudinal Beam Dynamics at KARA

    Get PDF
    Two parallel corrugated plates will be installed at the KIT storage ring KARA (KArlsruhe Research Accelerator). This impedance manipulation structure will be used to study and eventually control the beam dynamics and the emitted coherent synchrotron radiation (CSR). In this contribution, we present the results obtained with the Vlasov-Fokker-Planck solver Inovesa showing the impedance impact of different corrugated structures on the bunch and its emitted CSR power
    corecore