83 research outputs found

    Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models

    Get PDF
    Rhamnolipids (RLs) are biosurfactants with significant tensioactive and emulsifying properties. They are mainly composed by mono-RL and di-RL components. Although there are numerous studies concerning their molecular properties, information is scarce regarding the mechanisms by which each of the two components interacts with cell membranes. Herein, we performed phase-contrast and fluorescence microscopy experiments on plasma membrane models represented by giant-unilamellar-vesicles (GUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-[[(E,2S,3R)-1,3-dihydroxy-2-(octadecanoylamino) octadec-4-enyl]peroxy-hydroxyphosphoryl]oxyethyl-trimethylazanium (sphingomyelin, SM) and (3β)-cholest-5-en-3-ol (cholesterol, CHOL) (1:1:1 M ratio), which present liquid-order (Lo) liquid-disorder (Ld) phase coexistence, in the presence of either mono-RL or di-RL in 0.06–0.25 mM concentration range. A new method has been developed to determine area and volume of GUVs with asymmetrical shape and a kinetic model describing GUV-RL interaction in terms of two mechanisms, RL-insertion and pore formation, has been worked out. Results show that the insertion of mono-RL in the membrane outer leaflet is the dominant process with no pore formation and a negligible effect in modifying membrane permeability, but induces lipid mixing. Conversely, the di-RL-GUV interaction begins with the insertion mechanism and, as the time passes by, the pore formation process occurs. The analyses of di-RL show that the whole process is only relevant in the Ld phase with a higher extent to 0.25 mM than to 0.06 mM

    Response of Foraminifera to Anthropogenic Nicotine Pollution of Cigarette Butts: An Experimental Approach

    Get PDF
    The most often dispersed environmental pollutants that are released both directly and indirectly into the environment that may eventually reach aquatic ecosystems and contaminate aquatic biomes are cigarette butts (CBs). Toxicants such as nicotine, dangerous metals, total particulate matter, and recognized carcinogens can be introduced and transported via CBs into aquatic ecosystems. The examination of the effects of synthetic nicotine on three different species of cultured benthic foraminifera was the focus of this study. Three foraminiferal species from three distinct biomineralization pathways were specifically examined for viability and cellular ultrastructure, including the calcareous perforate Rosalina globularis, the calcareous imperforate Quinqueloculina spp., and the agglutinated Textularia agglutinans. The survival rate, cellular stress, and decalcification were used to assess the toxicological effects of synthetic nicotine. We were able to analyze the reaction of major macromolecules and calcium carbonate to this pollutant using FTIR (Fourier Transform Infrared) spectroscopy. High Performance Liquid Chromatography (HPLC) study was performed to increase our understanding of nicotine bioavailability in the medium culture. Different acute experiments were performed at different dates, and all indicated that synthetic nicotine is acutely hazardous to all three cultured foraminiferal taxa at lethal and sublethal concentrations. Each species responded differently depending on the type of shell biomineralization. Synthetic nicotine enhances shell decalcification and affects the composition of cytoplasmic macromolecules such as lipids and proteins, according to the FTIR spectroscopy investigations. The lipid content rose at lethal concentrations, possibly due to the creation of vesicles. The proteins signal evidences general cellular dyshomeostasis. The integration among the acute toxicity assay, synchrotron, and chemical HPLC analyses provided a valuable approach for the assessment of nicotine as a biomarker of exposure to the toxicants associated with smoking and the impact of this emerging and hazardous material on calcifying marine species

    Stereoselective approach to both 3,4-trans-disubstituted pyrrolidin-2-ones and pyrrolidines.

    No full text

    Stereoselective iodocyclisation of 3-acylamino-3-aryl-2-methylenealkanoates: synthesis of analogs of N-benzoyl-syn-phenylisoserine

    No full text
    A convenient approach to racemic analogues of N-benzoyl-syn-phenylisoserine was realized via the stereoselective iodocyclization of amides obtained from Baylis-Hillman adducts

    Modeling and synthesis of conformationally restricted amino acids

    No full text
    At present time the main goal of important research programs is to create new biological and biomimetic materials for asking scientific questions and solving problems relevant to biology, e.g., pharmaceutical development, mutation detection, and DNA sequencing. Widespread approaches to this kind of research are based on design and synthesize structures, and then characterize the physical, structural or biological properties of the new materials. This research involves major experts and scientists in the chemistry of amino acids, peptides, sugars, nucleosides, oligonucleotides, bioconjugation, and particularly conformationally restricted amino acids have been the target of both synthetic and medicinal chemistry, since they can be applied to the design of relevant biologically active compounds

    Conformational preferences of peptides containing riverse-turn mimetic gamma-lactams

    No full text
    corecore