4 research outputs found
Improvement of third-order intermodulation product of RF and microwave amplifiers by injection
This paper discusses the improvement in the third-order intermodulation product (IM3) performance obtainable from RF and microwave amplifiers by two alternative injection techniques. The first is the addition to the amplifier input of the second harmonics of the input spectrum and the second is the addition to the amplifier input of the difference frequencies between the spectral components of the input signal. Both techniques are considered in theory, by simulation and in practice. Both techniques give useful improvements in two-tone IM3 performance. The second harmonic technique reduced the IM3 level by 43 dB in an amplifier at 835 MHz. The difference-frequency technique gave a reduction of 48 dB in an amplifier at 880 MHz. The difference-frequency technique also gives a greater improvement for complex spectra signal
Influence of shear flow on vesicles near a wall: a numerical study
We describe the dynamics of three-dimensional fluid vesicles in steady shear
flow in the vicinity of a wall. This is analyzed numerically at low Reynolds
numbers using a boundary element method. The area-incompressible vesicle
exhibits bending elasticity. Forces due to adhesion or gravity oppose the
hydrodynamic lift force driving the vesicle away from a wall. We investigate
three cases. First, a neutrally buoyant vesicle is placed in the vicinity of a
wall which acts only as a geometrical constraint. We find that the lift
velocity is linearly proportional to shear rate and decreases with increasing
distance between the vesicle and the wall. Second, with a vesicle filled with a
denser fluid, we find a stationary hovering state. We present an estimate of
the viscous lift force which seems to agree with recent experiments of Lorz et
al. [Europhys. Lett., vol. 51, 468 (2000)]. Third, if the wall exerts an
additional adhesive force, we investigate the dynamical unbinding transition
which occurs at an adhesion strength linearly proportional to the shear rate.Comment: 17 pages (incl. 10 figures), RevTeX (figures in PostScript