6 research outputs found
Quantifying the CDK inhibitor VMY-1-103\u27s activity and tissue levels in an in vivo tumor model by LC-MS/MS and by MRI.
The development of new small molecule-based therapeutic drugs requires accurate quantification of drug bioavailability, biological activity and treatment efficacy. Rapidly measuring these endpoints is often hampered by the lack of efficient assay platforms with high sensitivity and specificity. Using an in vivo model system, we report a simple and sensitive liquid chromatography-tandem mass spectrometry assay to quantify the bioavailability of a recently developed novel cyclin-dependent kinase inhibitor VMY-1-103, a purvalanol B-based analog whose biological activity is enhanced via dansylation. We developed a rapid organic phase extraction technique and validated wide and functional VMY-1-103 distribution in various mouse tissues, consistent with its enhanced potency previously observed in a variety of human cancer cell lines. More importantly, in vivo MRI and single voxel proton MR-Spectroscopy further established that VMY-1-103 inhibited disease progression and affected key metabolites in a mouse model of hedgehog-driven medulloblastoma
Ruthenium-Catalyzed <i>N</i>‑Alkylation of Amines with Alcohols under Mild Conditions Using the Borrowing Hydrogen Methodology
Using
a simple amino amide ligand, ruthenium-catalyzed one-pot
alkylation of primary and secondary amines with simple alcohols was
carried out under a wide range of conditions. Using the alcohol as
solvent, alkylation was achieved under mild conditions, even as low
as room temperature. Reactions occurred with high conversion and selectivity
in many cases. Reactions can also be carried out at high temperatures
in organic solvent with high selectivity using stoichiometric amounts
of the alcohol
Quantifying the CDK inhibitor VMY-1-103's activity and tissue levels in an in vivo tumor model by LC-MS/MS and by MRI
The development of new small molecule-based therapeutic drugs requires accurate quantifcation of drug bioavailability, biological activity and treatment efcacy. Rapidly measuring these endpoints is often hampered by the lack of efcient assay platforms with high sensitivity and specifcity. Using an in vivo model system, we report a simple and sensitive liquid chromatography-tandem mass spectrometry assay to quantify the bioavailability of a recently developed novel cyclin-dependent kinase inhibitor VMY-1-103, a purvalanol B-based analog whose biological activity is enhanced via dansylation. We developed a rapid organic phase extraction technique and validated wide and functional VMY-1-103 distribution in various mouse tissues, consistent with its enhanced potency previously observed in a variety of human cancer cell lines. More importantly, in vivo MRI and single voxel proton MR-Spectroscopy further established that VMY-1-103 inhibited disease progression and afected key metabolites in a mouse model of hedgehog-driven medulloblastoma. © 2012 Landes Bioscience