144 research outputs found

    Lagrangian bias in the local bias model

    Full text link
    It is often assumed that the halo-patch fluctuation field can be written as a Taylor series in the initial Lagrangian dark matter density fluctuation field. We show that if this Lagrangian bias is local, and the initial conditions are Gaussian, then the two-point cross-correlation between halos and mass should be linearly proportional to the mass-mass auto-correlation function. This statement is exact and valid on all scales; there are no higher order contributions, e.g., from terms proportional to products or convolutions of two-point functions, which one might have thought would appear upon truncating the Taylor series of the halo bias function. In addition, the auto-correlation function of locally biased tracers can be written as a Taylor series in the auto-correlation function of the mass; there are no terms involving, e.g., derivatives or convolutions. Moreover, although the leading order coefficient, the linear bias factor of the auto-correlation function is just the square of that for the cross-correlation, it is the same as that obtained from expanding the mean number of halos as a function of the local density only in the large-scale limit. In principle, these relations allow simple tests of whether or not halo bias is indeed local in Lagrangian space. We discuss why things are more complicated in practice. We also discuss our results in light of recent work on the renormalizability of halo bias, demonstrating that it is better to renormalize than not. We use the Lognormal model to illustrate many of our findings.Comment: 14 pages, published on JCA

    Efficacy and tolerability of trastuzumab emtansine in advanced human epidermal growth factor receptor 2–positive breast cancer

    Get PDF
    © 2018, Hong Kong Academy of Medicine Press. All rights reserved. Introduction: The management of human epidermal growth factor receptor 2 (HER2)–positive breast cancer has changed dramatically with the introduction and widespread use of HER2-targeted therapies. There is, however, relatively limited real-world information about the effectiveness and safety of trastuzumab emtansine (T-DM1) in Hong Kong Chinese patients. We assessed the efficacy and toxicity profiles among local patients with HER2-positive advanced breast cancer who had received T-DM1 therapy in the second-line setting and beyond. Methods: This retrospective study involved five local centres that provide service for over 80% of the breast cancer population in Hong Kong. The study period was from December 2013 to December 2015. Patients were included if they had recurrent or metastatic histologically confirmed HER2+ breast cancer who had progressed after at least one line of anti-HER2 therapy including trastuzumab. Patients were excluded if they received T-DM1 as first-line treatment for recurrent or metastatic HER2+ breast cancer. Patient charts including biochemical and haematological profiles were reviewed for background information, T-DM1 response, and toxicity data. Adverse events were documented during chemotherapy and 28 days after the last dose of medication. Results: Among 37 patients being included in this study, 28 (75.7%) had two or more lines of anti-HER2 agents and 26 (70.3%) had received two or more lines of palliative chemotherapy. Response assessment revealed that three (8.1%) patients had a complete response, eight (21.6%) a partial response, 11 (29.7%) a stable disease, and 12 (32.4%) a progressive disease; three patients could not be assessed. The median duration of response was 17.3 (95% confidence interval, 8.4-24.8) months. The clinical benefit rate (complete response + partial response + stable disease, ≥12 weeks) was 37.8% (95% confidence interval, 22.2%-53.5%). The median progression-free survival was 6.0 (95% confidence interval, 3.3-9.8) months and the median overall survival had not been reached by the data cut-off date. Grade 3 or 4 toxicities included thrombocytopaenia (13.5%), raised alanine transaminase (8.1%), anaemia (5.4%), and hypokalaemia (2.7%). No patient died as a result of toxicities. Conclusions: In patients with HER2-positive advanced breast cancer who have been heavily pretreated with anti-HER2 agents and cytotoxic chemotherapy, T-DM1 is well tolerated and provided a meaningful progression-free survival of 6 months and an overall survival that has not been reached. Further studies to identify appropriate patient subgroups are warranted.Link_to_subscribed_fulltex

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore