164 research outputs found

    Nonlinear improvement of measurement-device-independent quantum key distribution using multimode quantum memory

    Full text link
    This paper proposes a quantum key distribution (QKD) scheme for measurement-device-independent QKD (MDI-QKD) utilizing quantum memory (QM), which is based on two distinct functions of QM: on-demand storage and multimode storage. We demonstrate a nonlinear increase in the secure key rate due to the utilization of QM. In the protocol incorporating on-demand storage, it is acknowledged that the secure key rate is scaled by R=O(ηch)R=O(\sqrt{\eta_{ch}}) as ηch\eta_{ch}, while as an alternative approach, we reveal that the improvement is O(ms2)O(m_s^2), with msm_s being the number of modes in frequency (spatial) multiplexing in the scheme incorporating multimode storage. We adopt an atomic frequency comb as a QM that incorporates the two functions and propose an architecture based on MDI-QKD to attain experimental feasibility. This scheme can be extended to quantum repeaters, and even for a single quantum-repeater node, there is a nonlinear enhancement and an experimental incentive to increase the number of modes.Comment: 18 pages, 9 figure

    Overconfidence Increases Productivity

    Get PDF
    Recent studies report that productivity increases under tournament reward structures than under piece rate reward structures. We conduct maze-solving experiments under both reward structures and reveal that overconfidence is a significant factor in increasing productivity. Specifically, subjects exhibiting progressively higher degrees of overconfidence solve more mazes. This result shows a positive aspect of overconfidence, which usually has been examined in its negative aspect as an expectation bias.

    Overconfidence Increases Productivity

    Full text link

    Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer

    Full text link
    Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.e., synthetic wavelength DH, can expand the axial range up to a few tens of microns, this method is still insufficient for practical applications. In this article, a tunable external cavity laser diode phase-locked to an optical frequency comb, namely, an optical-comb-referenced frequency synthesizer, is effectively used for multiple synthetic wavelengths within the range of 32 um to 1.20 m. A multiple cascade link of the phase images among an optical wavelength (= 1.520 um) and 5 different synthetic wavelengths (= 32.39 um, 99.98 um, 400.0 um, 1003 um, and 4021 um) enables the shape measurement of a reflective millimeter-sized stepped surface with the axial resolution of 34 nm. The axial dynamic range, defined as the ratio of the maximum axial range (= 0.60 m) to the axial resolution (= 34 nm), achieves 1.7*10^8, which is much larger than that of previous synthetic wavelength DH. Such a wide axial dynamic range capability will further expand the application field of DH for large objects with meter dimensions.Comment: 19 pages, 7 figure

    Computational self-testing for entangled magic states

    Get PDF
    In the seminal paper [Metger and Vidick, Quantum ’21], they proposed a computational self-testing protocol for Bell states in a single quantum device. Their protocol relies on the fact that the target states are stabilizer states, and hence it is highly non-trivial to reveal whether the other class of quantum states, non-stabilizer states, can be self-tested within their framework. Among non-stabilizer states, magic states are indispensable resources for universal quantum computation. In this letter, we show that a magic state for the CCZ gate can be self-tested while that for the T gate cannot. Our result is applicable to a proof of quantumness, where we can classically verify whether a quantum device generates a quantum state having non zero magic

    Evaluation of the simulator with automatic irrigation control system designed for countermeasures of internal contamination in dental unit water lines

    Get PDF
    The prevention of nosocomial infections is an imperative task. The dental chair unit (DCU) is an indispensable device used in dental treatment. However, it is known that the dental unit water line (DUWL) can become contaminated with biofilm, consisting mainly of heterotrophic bacteria (HB). Recently, the International Organization for Standardization specified the methods for testing DUWL contamination management. On these grounds, a simulator reproducing DUWL was prepared to standardize the examination method of the DUWL contamination. Objectives To evaluate the reproducibility of the DUWL simulator, monitor the DUWL contamination states, and test the efficacy of a commercial decontaminant for DUWL. Methods The DUWL simulator was assembled by a DCU manufacturing company. The simulator's DUWL was filled with tap water (TW), and left for approximately one year. Neutral electrolyzed water (NEW) was used as a decontaminant for DUWL. Both TW and NEW were passed through DUWL in a timely manner simulating daily dental treatment. Water was sampled from the air turbine hand piece weekly for 4 weeks and used for HB culture. Contamination status was evaluated by measuring bacterial adenosine triphosphate release and by culturing on Reasoner's 2A medium. Results The DUWL released contaminated water had a bacterial count of over 6 × 104 cfu/mL. After passing NEW through DUWL for 1 week, the count drastically decreased to its basal level and remained steady for 4 weeks. However, TW showed no effect on DUWL decontamination throughout the examination periods. Conclusions The DUWL simulator could be useful to examine the efficacy of the decontaminant for DUWL and development of new methods in DUWL contamination management

    A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    Get PDF
    A robust fiber Bragg grating (FBG) hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2) catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor solution. The atom ratio of Si : Pt was fixed at 13 : 1. A small amount of this solution was dropped on the substrate and dried at room temperature. After that, the film was calcined at 500°C in air. These procedures were repeated and therefore thick hydrogen-sensitive films were obtained. The catalytic film obtained by 20-time coating on quartz glass substrate showed a temperature change 75 K upon exposure to 3 vol.% H2. For realizing robust sensor device, this catalytic film was deposited and FBG portion was directly fixed on titanium substrate. The sensor device showed good performances enough to detect hydrogen gas in the concentration range below lower explosion limit at room temperature. The enhancement of the sensitivity was attributed to not only catalytic combustion heat but also related thermal strain
    corecore