14 research outputs found

    Efficacy of wearing compression garments during post-exercise period after two repeated bouts of strenuous exercise: a randomized crossover design in healthy, active males

    No full text
    Abstract Background The efficacy of wearing [a] compression garment (CG) between repeated bouts of exercise within a same day has not been fully understood. The present study determined the effect of wearing a CG after strenuous exercise sessions (consisting of sprint exercise, resistance exercise, drop jump) twice a day on exercise performance, muscle damage, and inflammatory responses. Methods Eleven physically active males (age, 22.7 ± 0.9 years; height, 175.7 ± 6.7 cm; body mass, 73.6 ± 10.2 kg; BMI, 23.8 ± 2.7 kg/m2) performed two trials (a randomized crossover design), consisting of the trial with either wearing a whole-body CG during post-exercise period (CG trial) or the trial with wearing a normal garment without specific pressure (CON trial). Two exercise sessions were conducted in the morning (09:00–10:00, Ex1) and afternoon (14:00–15:00, Ex2). Immediately after completing 60 min of each exercise, the subjects in the CG trial changed into a whole-body CG. Time-course changes in exercise performance (bench press power, jump performances, repeated sprint ability), blood variables (lactate, glucose, myoglobin, creatine kinase, interleukin-6, leptin), and scores of subjective feeling (fatigue, muscle soreness) were compared between the CG and CON trials before Ex1 (8:40), immediately before Ex2 (14:00, 4 h after Ex1), 4 h after Ex2 (19:00), and 24 h after the onset of Ex1 (9:00). Results Two bouts of exercise significantly decreased performances of counter movement jump (main effect for time: P = 0.04, F = 3.75, partial η 2 = 0.27) and rebound jump (main effect for time: P = 0.00, F = 12.22, partial η 2 = 0.55), while no significant difference was observed between the two trials (interaction: P = 0.10, F = 1.96, partial η 2 = 0.16 for counter movement jump, P = 0.93, F = 0.01, partial η 2 = 0.001 for rebound jump). Repeated sprint ability (power output during 10 × 6 s maximal sprint, 30-s rest periods between sprints) did not differ significantly between the two trials at any time points. Power output during bench press exercise was not significantly different between the two trials (interaction: P = 0.46, F = 0.99, partial η 2 = 0.09 for Ex1, P = 0.74, F = 0.38, partial η 2 = 0.04 for Ex2, P = 0.22, F = 1.54, partial η 2 = 0.13 for 24 h after the onset of Ex1). Serum myoglobin, creatine kinase, leptin, and plasma interleukin-6 were not significantly different between the two trials (interaction: P = 0.16, F = 2.23, partial η 2 = 0.18 for myoglobin; P = 0.39, F = 0.81, partial η 2 = 0.08 for creatine kinase; P = 0.28, F = 1.30, partial η 2 = 0.13 for leptin; P = 0.34, F = 1.05, partial η 2 = 0.12 for interleukin-6). Muscle soreness at 24 h during post-exercise period was significantly lower in the CG trial than in the CON trial for pectoralis major muscle (P = 0.04), while the value was inversely lower in the CON trial for hamstring (P = 0.047). Conclusions Wearing a whole-body CG during the post-exercise period after two bouts of strenuous exercise sessions separated with 4 h of rest did not promote recovery of muscle function for lower limb muscles nor did it attenuate exercise-induced muscle damage in physically active males

    Wearing lower-body compression garment with medium pressure impaired exercise-induced performance decrement during prolonged running.

    No full text
    OBJECTIVE:To investigate the effect of wearing a lower body compression garment (CG) exerting different pressure levels during prolonged running on exercise-induced muscle damage and the inflammatory response. METHODS:Eight male participants completed three exercise trials in a random order. The exercise consisted of 120 min of uphill running at 60% of VO2max. The exercise trials included 1) wearing a lower-body CG with 30 mmHg pressure [HIGH]; 2) wearing a lower-body CG with 15 mmHg pressure [MED]; and 3) wearing a lower-body garment with < 5 mmHg pressure [CON]. Heart rate (HR), and rate of perceived exertion for respiration and legs were monitored continuously during exercise. Time-course change in jump height was evaluated before and immediately after exercise. Blood samples were collected to determine blood glucose, lactate, serum creatine kinase, myoglobin, free fatty acids, glycerol, cortisol, and plasma interleukin-6 (IL-6) concentrations before exercise, 60 min of the 120 min exercise period, immediately after exercise, and 60 min after exercise. RESULTS:Jump height was significantly higher immediately after the exercise in the MED trial compared with that in the HIGH trial (P = 0.04). Mean HR during the 120 min exercise was significantly lower in the MED trial (162 ± 4 bpm) than that in the CON trial (170 ± 4 bpm, P = 0.01). Plasma IL-6 concentrations increased significantly with exercise in all trials, but the area under the curve during exercise was significantly lower in the MED trial (397 ± 58 pg/ml·120 min) compared with that in the CON trial (670 ± 86 pg/ml·120 min, P = 0.04). CONCLUSION:Wearing a lower body CG exerting medium pressure (approximately 15 mmHg) significantly attenuated decrease in jump performance than that with wearing a lower body CG exerting high pressure (approximately 30 mmHg). Furthermore, exercise-induced increases in HR and the inflammatory response were significantly smaller with CG exerted 15mmHg than that with garment exerted < 5 mmHg

    Wearing Compression Tights on the Thigh during Prolonged Running Attenuated Exercise-Induced Increase in Muscle Damage Marker in Blood

    No full text
    Purpose: To examine the effects of wearing a lower-body compression garment with different body coverage areas during prolonged running on exercise performance and muscle damage.Methods: Thirty male subjects were randomly assigned to one of three groups: (1) wearing a compression tights with 15 mmHg to thigh [n = 10, CT group], (2) wearing a compression socks with 15 mmHg to calf [n = 10, CS group], and (3) wearing a lower-body garment with &lt; 5 mmHg to thigh and calf [n = 10, CON group]. The exercise consisted of 120 min of uphill running at 55% of V˙O2max. Heart rate (HR), rate of perceived exertion (RPE), and running economy (evaluated by VO2) were monitored during exercise every 10 min. Changes in maximum voluntary contraction (MVC) of knee extension and plantar flexion, height of counter movement jump (CMJ) and drop jump (DJ), and scores of subjective feelings of muscle soreness and fatigue were evaluated before exercise, and 60 and 180 min after exercise. Blood samples were collected to determine blood glucose, lactate, serum free fatty acid, myoglobin (Mb), high-sensitivity C-reactive protein, and plasma interleukin-6 concentrations before exercise (after 20 min of rest), at 60 min of exercise, immediately after exercise, and 60 and 180 min after exercise.Results: Changes in HR, RPE, and running economy during exercise did not differ significantly among the three groups. MVC of knee extension and plantar flexion, and DJ decreased significantly following exercise, with no difference among groups. The serum Mb concentration increased significantly with exercise in all groups, whereas the area under the curve for Mb concentration during 180 min post-exercise was significantly lower in the CT group (13,833 ± 1,397 pg/mL 180 min) than in the CON group (24,343 ± 3,370 pg/mL 180 min, P = 0.03).Conclusion: Wearing compression garment on the thigh significantly attenuated the increase in serum Mb concentration after exercise, suggesting that exercise-induced muscle damage was attenuated

    Changes in CMJ height.

    No full text
    <p>Values are mean ± standard deviation. ¶; <i>P</i> < 0.05 between MED and HIGH. Ex120; immediately after exercise.</p

    Blood glucose, lactate and serum CK and Mb concentrations.

    No full text
    <p>Blood glucose, lactate and serum CK and Mb concentrations.</p
    corecore