16 research outputs found

    Inelastic collision processes in ozone and their relation to atmospheric pressure broadening

    Get PDF
    The research task employs infrared double-resonance to determine rotational energy transfer rates and pathways, in both the ground and vibrationally excited states of ozone. The resulting data base will then be employed to test inelastic scattering theories and to assess intermolecular potential models, both of which are necessary for the systematization and prediction of infrared pressure-broadening coefficients, which are in turn required by atmospheric ozone monitoring techniques based on infrared remote sensing. In addition, observation of excited-state absorption transitions will permit us to improve the determination of the 2 nu(sub 3), nu(sub 1) + nu(sub 2), and 2 nu(sub 1) rotational constants and to derive band strengths for hot-band transitions involving these levels

    Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    Get PDF
    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia

    Overtone spectroscopy of benzaldehyde

    No full text
    corecore