62 research outputs found

    Interaction of massless Dirac field with a Poincar\'e gauge field

    Full text link
    In this paper we consider a model of Poincar\'e gauge theory (PGT) in which a translational gauge field and a Lorentz gauge field are actually identified with the Einstein's gravitational field and a pair of ``Yang-Mills'' field and its partner, respectively.In this model we re-derive some special solutions and take up one of them. The solution represents a ``Yang-Mills'' field without its partner field and the Reissner-Nordstr\"om type spacetime, which are generated by a PGT-gauge charge and its mass.It is main purpose of this paper to investigate the interaction of massless Dirac fields with those fields. As a result, we find an interesting fact that the left-handed massless Dirac fields behave in the different manner from the right-handed ones. This can be explained as to be caused by the direct interaction of Dirac fields with the ``Yang-Mills'' field. Accordingly, the phenomenon can not happen in the behavior of the neutrino waves in ordinary Reissner-Nordstr\"om geometry. The difference between left- and right-handed effects is calculated quantitatively, considering the scattering problems of the massless Dirac fields by our Reissner-Nordstr\"om type black-hole.Comment: 10pages, RevTeX3.

    Electronic Control of Spin Alignment in pi-Conjugated Molecular Magnets

    Full text link
    Intramolecular spin alignment in pi-conjugated molecules is studied theoretically in a model of a Peierls-Hubbard chain coupled with two localized spins. By means of the exact diagonalization technique, we demonstrate that a spin singlet (S=0) to quartet (S=3/2) transition can be induced by electronic doping, depending on the chain length, the positions of the localized spins, and the sign of the electron-spin coupling. The calculated results provides a theoretical basis for understanding the mechanism of spin alignment recently observed in a diradical donor molecule.Comment: 4 pages, 4 figures, Physical Review Letters (in press

    Sector logic implementation for the ATLAS endcap level-1 muon trigger

    Get PDF
    We present development of the Sector Logic for the ATLAS endcap Level-1 (LVL1) muon trigger. The muon tracks from the interaction point (IP) are bent by the magnetic fields induced by the ATLAS toroidal magnets. The Sector Logic reconstructs three dimensional muon tracks with six levels of transverse momentum (pT) by combining two sets (R-Z and φ-Z) of information from the Thin Gap Chamber (TGC) detectors. Then, it selects two highest pT tracks in each trigger sector. The Sector Logic module is designed in pipelined structure to achieve no-dead-time operation and shorter latency. Look-Up-Tables (LUTs) are used so that any pT threshold level can be set. To achieve these, we adopted SRAM embedded type FPGA devices. The design and its performance are given in this presentation

    Charge-density-wave instability in the Holstein model with quartic anharmonic phonons

    Full text link
    The molecular-crystal model, that describes a one-dimensional electron gas interacting with quartic anharmonic lattice vibrations, offers great potentials in the mapping of a relatively wide range of low-dimensional fermion systems coupled to optical phonons onto quantum liquids with retarded interactions. Following a non-perturbative approach involving non-Gaussian partial functional integrations of lattice degrees of freedom, the exact expression of the phonon-mediated two-electron action for this model is derived. With the help of Hubbard-Stratonovich transformation the charge-density-wave instability is examined in the sequel, with particular emphasis on the effect of the quartic anharmonic phonons on the charge-density-wave transition temperature.Comment: 12 pages, 3 figure

    Improved measurement of the K+->pi+nu(nu)over-bar branching ratio

    Get PDF
    An additional event near the upper kinematic limit for K+-->pi(+)nu(nu) over bar has been observed by experiment E949 at Brookhaven National Laboratory. Combining previously reported and new data, the branching ratio is B(K+-->pi(+)nu(nu) over bar)=(1.47(-0.89)(+1.30))x10(-10) based on three events observed in the pion momentum region 211<P<229 MeV/c. At the measured central value of the branching ratio, the additional event had a signal-to-background ratio of 0.9

    Search for the decay K+ to pi+ gamma gamma in the pi+ momentum region P>213 MeV/c

    Full text link
    We have searched for the K+ to pi+ gamma gamma decay in the kinematic region with pi+ momentum close to the end point. No events were observed, and the 90% confidence-level upper limit on the partial branching ratio was obtained, B(K+ to pi+ gamma gamma, P>213 MeV/c) < 8.3 x 10-9 under the assumption of chiral perturbation theory including next-to-leading order ``unitarity'' corrections. The same data were used to determine an upper limit on the K+ to pi+ gamma branching ratio of 2.3 x 10-9 at the 90% confidence level.Comment: 15 pages, 3 figures; no change in the results, accepted for publication in Physics Letters
    • …
    corecore