17 research outputs found

    Preconditioning with Short-Term Dietary Restriction Attenuates Cardiac Oxidative Stress and Hypertrophy Induced by Chronic Pressure Overload

    No full text
    Left ventricular (LV) hypertrophy and associated heart failure are becoming a more prevalent and critical public health issue with the aging of society, and are exacerbated by reactive oxygen species (ROS). Dietary restriction (DR) markedly inhibits senescent changes; however, prolonged DR is difficult. We herein investigated whether preconditioning with short-term DR attenuates chronic pressure overload-induced cardiac hypertrophy and associated oxidative stress. Male c57BL6 mice were randomly divided into an ad libitum (AL) diet or 40% restricted diet (DR preconditioning, DRPC) group for 2 weeks prior to ascending aortic constriction (AAC), and all mice were fed ad libitum after AAC surgery. Two weeks after surgery, pressure overload by AAC increased LV wall thickness in association with LV diastolic dysfunction and promoted myocyte hypertrophy and cardiac fibrosis in the AL+AAC group. Oxidative stress in cardiac tissue and mitochondria also increased in the AL+AAC group in association with increments in cardiac NADPH oxidase-derived and mitochondrial ROS production. LV hypertrophy and associated cardiac dysfunction and oxidative stress were significantly attenuated in the DRPC+AAC group. Moreover, less severe mitochondrial oxidative damage in the DRPC+AAC group was associated with the suppression of mitochondrial permeability transition and cardiac apoptosis. These results indicate that chronic pressure overload-induced cardiac hypertrophy in association with cardiac and mitochondrial oxidative damage were attenuated by preconditioning with short-term DR

    Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation.

    No full text
    This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance

    Raman Spectroscopy of Oral Candida Species: Molecular-Scale Analyses, Chemometrics, and Barcode Identification.

    No full text
    Oral candidiasis, a common opportunistic infection of the oral cavity, is mainly caused by the following four Candida species (in decreasing incidence rate): Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei. This study offers in-depth Raman spectroscopy analyses of these species and proposes procedures for an accurate and rapid identification of oral yeast species. We first obtained average spectra for different Candida species and systematically analyzed them in order to decode structural differences among species at the molecular scale. Then, we searched for a statistical validation through a chemometric method based on principal component analysis (PCA). This method was found only partially capable to mechanistically distinguish among Candida species. We thus proposed a new Raman barcoding approach based on an algorithm that converts spectrally deconvoluted Raman sub-bands into barcodes. Barcode-assisted Raman analyses could enable on-site identification in nearly real-time, thus implementing preventive oral control, enabling prompt selection of the most effective drug, and increasing the probability to interrupt disease transmission
    corecore