187 research outputs found

    Mixing Histopathology Prototypes into Robust Slide-Level Representations for Cancer Subtyping

    Full text link
    Whole-slide image analysis via the means of computational pathology often relies on processing tessellated gigapixel images with only slide-level labels available. Applying multiple instance learning-based methods or transformer models is computationally expensive as, for each image, all instances have to be processed simultaneously. The MLP-Mixer is an under-explored alternative model to common vision transformers, especially for large-scale datasets. Due to the lack of a self-attention mechanism, they have linear computational complexity to the number of input patches but achieve comparable performance on natural image datasets. We propose a combination of feature embedding and clustering to preprocess the full whole-slide image into a reduced prototype representation which can then serve as input to a suitable MLP-Mixer architecture. Our experiments on two public benchmarks and one inhouse malignant lymphoma dataset show comparable performance to current state-of-the-art methods, while achieving lower training costs in terms of computational time and memory load. Code is publicly available at https://github.com/butkej/ProtoMixer.Comment: The final authenticated publication is available online at https://doi.org/10.1007/978-3-031-45676-3_1

    Variations of cosmic noise absorption (CNA) by energetic electron precipitation (EEP) and changes of the auroral morphology

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OS] Space and upper atmospheric sciences, Wed. 4 Dec. / Institute of Statistics and Mathematics (ISM) Seminar room 2 (D304) (3rd floor

    Cryptococcal pleural effusion in an HTLV-I carrier with Waldenstroem's macroglobulinemia.

    Get PDF
    A 70-year-old woman with Waldenstroem's macroglobulinemia developed bilateral pleural effusions due to Cryptococcus neoformans. She was found to be a carrier of HTLV-I. It is speculated that the opportunistic infection occurred as the result of an impaired cellular immunity secondary to HTLV-I infection.</p

    Ubiquitin-Specific Protease 2 Modulates the Lipopolysaccharide-Elicited Expression of Proinflammatory Cytokines in Macrophage-like HL-60 Cells

    Get PDF
    We investigated the regulatory roles of USP2 in mRNA accumulation of proinflammatory cytokines in macrophage-like cells after stimulation with a toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Human macrophage-like HL-60 cells, mouse macrophage-like J774.1 cells, and mouse peritoneal macrophages demonstrated negative feedback to USP2 mRNA levels after LPS stimulation, suggesting that USP2 plays a significant role in LPS-stimulated macrophages. USP2 knockdown (KD) by short hairpin RNA in HL-60 cells promoted the accumulation of transcripts for 25 of 104 cytokines after LPS stimulation. In contrast, limited induction of cytokines was observed in cells forcibly expressing the longer splice variant of USP2 (USP2A), or in peritoneal macrophages isolated from Usp2a transgenic mice. An ubiquitin isopeptidase-deficient USP2A mutant failed to suppress LPS-induced cytokine expression, suggesting that protein ubiquitination contributes to USP2-mediated cytokine repression. Although USP2 deficiency did not accelerate TNF receptor-associated factor (TRAF) 6-nuclear factor-κB (NF-κB) signaling, it increased the DNA binding ratio of the octamer binding transcription factor (Oct)-1 to Oct-2 in TNF, CXCL8, CCL4, and IL6 promoters. USP2 decreased nuclear Oct-2 protein levels in addition to decreasing the polyubiquitination of Oct-1. In summary, USP2 modulates proinflammatory cytokine induction, possibly through modification of Oct proteins, in macrophages following TLR4 activation

    Spatial Evolution of Wave‐Particle Interaction Region Deduced From Flash‐Type Auroras and Chorus‐Ray Tracing

    Get PDF
    In-situ observations of spatial variations of the wave-particle interaction region require a large number of satellite probes. As an alternative, flash-type auroras, a kind of pulsating aurora, driven by discrete chorus elements, can be used to investigate the interaction region with a high spatial resolution. We estimated the spatial extent of wave-particle interaction region from ground-based observations of flash aurora at Gakona (62.39°N, 214.78°E), Alaska at subauroral latitudes, and found that the auroral expansion was predominantly to the low-latitude side. The spatial displacement is thought to be caused by the propagation effects of chorus waves in the magnetosphere. Using ray tracing analysis to take into account chorus wave propagation, we reconstructed the spatiotemporal evolution of the volume emission rate and confirmed that the predominant expansion is toward the lower-latitude side in the ionosphere. This study shows that chorus wave propagation in the magnetosphere gives new insight for characterizing the transverse size (across the geomagnetic field line) of wave-particle interaction regions. The calculated spatial scale of the column auroral emission shows a correlation with the magnetic latitude of the resonance region at magnetic latitudes within 10° of the equatorial plane of the magnetosphere. Our results suggest that the spatial scale of a flash aurora is indirectly related to the chorus amplitude because the latitudinal range of the wave-particle interaction is important for the growth of wave amplitude
    corecore