

Development of High-Strength Nb3Sn Conductor

著者	渡辺和雄
journal or	IEEE Transactions on Applied Superconductivity
publication title	
volume	14
number	2
page range	1004-1007
year	2004
URL	http://hdl.handle.net/10097/47149

doi: 10.1109/TASC.2004.830367

Development of High-Strength Nb₃Sn Conductor

Kazutomi Miyoshi, Sakaru Endoh, Shin-ichiro Meguro, Gen Nishijima, Satoshi Awaji, and Kazuo Watanabe

Abstract—Nb₃Sn superconducting wires reinforced with Cu-Ni/Nb-Ti composite have been developed. Nb₃Sn wires reinforced with Cu-Ni/Nb-Ti showed good mechanical and electrical properties. In this study, 1.2 mm-diameter (Nb, Ti)₃Sn superconducting wire of 13 km in length reinforced with Cu-Ni/Nb-Ti was successfully fabricated. Moreover, the effect of copper fraction to the strength of the wire was studied.

Index Terms—Cu/Nb-Ti, high strength, intermetallic compound, Nb₃Sn, reinforcer.

I. INTRODUCTION

R ECENTLY, Nb₃Sn superconducting wires with reinforcer, such as CuNb composite [1], Al₂O₃-dispersed copper [2], and Tantalum [3] were developed to overcome huge electromagnetic stress. To obtain higher strength than these reinforced Nb₃Sn wires, the Nb₃Sn wire with intermetallic compound have been developed. Generally, intermetallic compound is very hard but brittle and have less workability than common metals. But if the components of the intermetallic compound can be worked together like Niobium and Tin of Nb₃Sn, intermetallic compound will successfully form at the final heat treatment for Nb₃Sn formation. In [4], we used the intermetallic composite as a reinforcer for the Nb₃Sn wire. The wire showed very high strength, but the strain limit of the wire was too low to practical use.

In this paper, we report on the properties of the $(Nb, Ti)_3Sn$ superconducting wire with Cu-Ni/Nb-Ti reinforcer (CuNi – NbTi/Nb₃Sn) and the influence of copper fraction on the strength of the $(Nb, Ti)_3Sn$ superconducting wire with Cu/Nb-Ti reinforcer (Cu – NbTi/Nb₃Sn) fabricated in laboratory scale (2 kg). Secondly, a fabrication of the CuNi – NbTi/Nb₃Sn in the industrial scale is also reported.

II. THE Nb₃Sn Wire With Cu-Ni/Nb-Ti Reinforcer

A. Nb₃Sn Wires With and Without Cu-Ni/Nb-Ti Reinforcer

Table I shows major parameters of the $CuNi - NbTi/Nb_3Sn$ wire and the wire without reinforcer (Cu/Nb_3Sn). The wire and filaments are 1 mm and 3.5 μ m in diameter respectively. The filaments were pure niobium. Composition of bronze matrix of both wire before final heat treatment is Cu-14.2wt%Sn-

Manuscript received October 21, 2003.

G. Nishijima, S. Awaji, and K. Watanabe are with IMR, Tohoku University, Sendai 980-8577, Japan (e-mail: gen@imr.edu; awaji@mail.cc.tohoku.ac.jp; kwata@imr.tohoku.ac.jp).

Digital Object Identifier 10.1109/TASC.2004.830367

TABLE I MAJOR PARAMETERS OF FABRICATED WIRES

Items	CuNi-NbTi/	Cu/Nb ₃ Sn	
	Nb ₃ Sn		
Wire diameter (mm)	1.001	1.002	
Twist pitch (mm)		30	
Filament diameter (mm)		3.5	
Number of filament	10127	11229	
Reinforcer	CuNi-NbTi	-	
Diffusion barrier		Nb 11 µm	
Fraction			
Copper (stabilizer)	0.264	0.524	
Superconducting area	0.471	0.476	
Reinforcer	0.265	-	

Fig. 1. Cross-sectional views of the Nb₃Sn superconducting wire. (a) With Cu-Ni/Nb-Ti reinforcer (CuNi - NbTi/Nb₃Sn). (b) Without reinforcer (Cu/Nb₃Sn). Cu-Ni/Nb-Ti reinforcer is placed center of the wire surrounded by the niobium diffusion barrier. Both wires were before heat treatment.

0.2wt%Ti and bronze to niobium ratio was 2.3. The volume fractions of the superconducting areas including the diffusion barriers are 0.471 and 0.476 for the CuNi – NbTi/Nb₃Sn and Cu/Nb₃Sn respectively. The volume fraction of reinforcer is 0.265 for the CuNi – NbTi/Nb₃Sn wire. In the Cu/Nb₃Sn wire, Cu-Ni/Nb-Ti reinforcer was replaced with copper stabilizer in order to comparison. Cross-sectional views of both wires are shown in Fig. 1.

B. Properties

1) Critical Current: Critical current densities of both wires at the magnetic fields from 8 to 14 T are shown in Fig. 2. Critical current was measured with four probe method using 25 mm-diameter FRP mandrel. Criteria of the critical current is 10^{-5} V/m. Critical current density with copper stabilizer and reinforcer area J_c(SC+barrier) was given as the critical current divided by the amount of the bronze/filament area and niobium barrier area. J_c(SC + barrier) of the CuNi – NbTi/Nb₃Sn wire at 12 and 14 T is 625 and 415 A/mm², while that of Cu/Nb₃Sn wire at 12 and 14 T is 655 and 455 A/mm², respectively. CuNi – NbTi/Nb₃Sn wire shows 95% of critical current of Cu/Nb₃Sn wire at 12 T, while Nb₃Sn wire with

1051-8223/04\$20.00 © 2004 IEEE

K. Miyoshi, S. Endoh, and S. Meguro are with Furukawa Electric Co., Ltd., Tochigi 321-1493, Japan (e-mail: miyosi@ho.furukawa.co.jp; sakaru@ho. furukawa.co.jp; meguro@nikko.furukawa.co.jp).

Fig. 2. Critical current density as a function of magnetic field for $CuNi - NbTi/Nb_3Sn$ wire and Cu/Nb_3Sn wire. Both wires were heat treated at 924 K for 864 ks. $J_c(SC + barrier)$ was given as the critical current divided by the amount of the bronze/filament area and niobium barrier area.

Fig. 3. Stress-strain curves of the $\rm CuNi - NbTi/Nb_3Sn$ wire and the $\rm Cu/Nb_3Sn$ wire at 4.2 K and 14.5 T. Both wires were heat treated at 924 K for 864 ks.

CuNb reinforce stabilizer showed 87% of critical current of Cu/Nb_3Sn wire [5].

2) Tensile Properties and Strain Effect: The stress-strain curves of the CuNi – NbTi/Nb₃Sn and the Cu/Nb₃Sn wire at 4.2 K, 14.5 T are shown in Fig. 3. The yield stress of the CuNi – NbTi/Nb₃Sn and the Cu/Nb₃Sn wire at 4.2 K are 370 MPa and 150 MPa respectively. The stress effects on I_c at 14.5 T and 4.2 K for both wires are shown in Fig. 4. In this measurement, criteria of critical current is $1 \,\mu$ V/cm. The maximum I_c(I_{cm}) was 172 A at $\varepsilon = 0.18\%$ for the CuNi – NbTi/Nb₃Sn wire. It indicates that the intrinsic superconducting properties for both

Fig. 4. Stress effects on I_c for the $CuNi - NbTi/Nb_3Sn$ wire and the Cu/Nb_3Sn wire at 4.2 K and 14.5 T. Both wires were heat treated at 924 K for 864 ks. I_c criteria was $1 \,\mu V/cm$.

TABLE II Major Parameters of $Cu - NbTi/Nb_3SN$

Items	Sample A	Sample B	Sample C
Wire diameter (mm)	1.0	1.0	1.0
Filament diameter (µm)	3.5	3.5	3.5
Reinforcer	Cu/NbTi	Cu/NbTi	Cu/NbTi
Diffusion barrier	Та	Та	Та
Fraction			
Copper(stabilizer)	0.326	0.383	0.435
Superconducting area	0.510	0.468	0.431
Reinforcer	0.164	0.149	0.134

wire are nearly the same and the difference in the strain state for both wire causes a different superconducting behavior for both wires.

It is clear in Fig. 4 that the $\text{CuNi} - \text{NbTi/Nb}_3\text{Sn}$ wire shows higher critical current than the $\text{Cu/Nb}_3\text{Sn}$ wire at the stress over 100 MPa. These high stress tolerance of the $\text{CuNi} - \text{NbTi/Nb}_3\text{Sn}$ wire is very useful for the practical use.

III. STRENGTH OF THE WIRE WITH DIFFERENT Cu FRACTION

A. Nb₃Sn Wire With Cu/Nb-Ti Reinforcer

For the electrical stability, amount of the copper stabilizer is very important. But the copper stabilizer is fully annealed during the final heat treatment for Nb₃Sn formation and shows very low yield strength. From the viewpoint of the strength, it seems very difficult to increase the total amount of copper stabilizer without degradation of strength. Consequently, we studied strength of the Nb₃Sn wire with Cu/Nb-Ti reinforcer (Cu – NbTi/Nb₃Sn) provided with various copper fraction. The area ratio of the reinforcer to superconducting area is 0.3:1. Major parameters of Cu – NbTi/Nb₃Sn wires are shown in Table II. Copper fraction of Sample A, B, and C is 32.6%, 38.3%, and 43.5% respectively. Of all three wires, tantalum was used for the diffusion barrier. Cross sectional view of Sample C is shown in Fig. 5.

Fig. 5. Cross-sectional view of sample C. Cu-NbTi reinforcer is placed center of the wire surrounded by the tantalum diffusion barrier.

Fig. 6. Critical current density as a function of magnetic field for $\rm Cu-NbTi/Nb_3Sn$ wires. Wires were heat treated at 924 K for 864 ks. $\rm J_c(SC$ + barrier) was given as the critical current divided by the amount of the bronze/filament area and tantalum barrier area.

B. Properties

Critical current densities of three wires, Sample A, B, and C at the magnetic fields from 12 to 14 T are shown in Fig. 6. Critical current densities of these wires are 610–620 A/mm^2 at 12 T and 410–420 A/mm^2 at 14 T. There are no significant effects on critical current density caused by the difference in copper fraction of the wire.

The tensile strength and yield strength of sample A, B, and C are shown as a function of copper fraction in Fig. 7. It is clear that the strength of the wire is inversely proportional to the copper fraction of the wire.

IV. WIRE FABRICATION IN THE INDUSTRIAL SCALE

A. Wire Fabrication

Due to the possibility of the formation of the intermetallic compound during the wire fabrication, it is important to ensure the fabricability of the $CuNi - NbTi/Nb_3Sn$ wire in industrial scale. We fabricated about 13 km(140 kg) of 1.2 mm-diameter $CuNi - NbTi/Nb_3Sn$ wire. Major parameters and cross section of the fabricated wire are shown in Table III and Fig. 8, respectively.

Fig. 7. Strength of the samples A, B, and C at R.T. as a function of the copper fraction. Wires were heat treated at 924 K for 864 ks.

 $\begin{array}{l} \textbf{TABLE III}\\ \textbf{Major Parameters of } \mathrm{CuNi}-\mathrm{NbTi/Nb}_{3}\mathrm{Sn} \end{array}$

Items	CuNi-NbTi/Nb3Sn	
Wire diameter (mm)	1.202	
Twist pitch (mm)	50	
Filament diameter (µm)	3.5	
Number of filament	13034	
Reinforcer	Cu-Ni/Nb-Ti	
Diffusion barrier	Nb 15 µm	
Fraction		
Copper(stabilizer)	0.310	
Superconducting area	0.433	
Reinforcer	0.257	

Fig. 8. Cross-sectional view of the $\rm Nb_3Sn$ superconducting wire with Cu-Ni/Nb-Ti reinforcer fabricated in industrial scale.

The fabricating procedure was ordinary bronze process and any special treatment was not required for the CuNi – NbTi/Nb₃Sn wire. The CuNi – NbTi/Nb₃Sn wire has good fabricability and we could fabricate a 13 km (140 kg) of CuNi – NbTi/Nb₃Sn wire successfully.

B. Properties

Critical density of the CuNi – $NbTi/Nb_3Sn$ wire in industrial scale is shown in Fig. 9. Critical density of the wire

Fig. 9. Critical current density as a function of magnetic field for ${\rm CuNi}-{\rm NbTi}/{\rm Nb}_3{\rm Sn}$ wire fabricated in industrial scale. Wire was heat treated at 924 K for 864 ks. $J_c({\rm SC}$ + barrier) was given as the critical current divided by the amount of the bronze/filament area and niobium barrier area.

Fig. 10. Stress-strain curve of the ${\rm CuNi}-{\rm Nb}{\rm Ti}/{\rm Nb}_{3}{\rm Sn}$ wire fabricated in industrial scale at R.T. Wire was heat treated at 924 K for 864 ks.

is 604 A/mm^2 at 12 T and 403 A/mm^2 at 14 T. They are very close to the results of lab.-scale wires. It indicates that no harmful damage occurred in the longer fabricating process than lab.-scale one.

Stress-strain curve of the wire is shown in Fig. 10. Yield strength (0.2% proof stress) of the wire is 350 MPa.

V. CONCLUSIONS

The $(Nb, Ti)_3Sn$ superconducting wire with Cu-Ni/Nb-Ti reinforcer $(CuNi - NbTi/Nb_3Sn)$ was successfully fabricated. Critical current density of CuNi - NbTi/Nb_3Sn was almost the same as that of the $(Nb, Ti)_3Sn$ superconducting wire without reinforcer (Cu/Nb_3Sn) . 0.2% proof stress of CuNi - NbTi/Nb_3Sn was more than two times of that of Cu/Nb_3Sn.

Strength of the wire is inverse proportion to the copper fraction, while critical current density is not sensitive to the copper fraction.

In the industrial scale production, $\text{CuNi}-\text{NbTi}/\text{Nb}_3\text{Sn}$ wire of 13 km in length was successfully fabricated. The wire showed a good fabricability through out the production. Critical current density at 12 T is 603 A/mm². The 0.2% proof stress at R.T. of the CuNi – NbTi/Nb₃Sn wire is 350 MPa.

ACKNOWLEDGMENT

The authors thank Prof. Katagiri, Iwate University, for the evaluation of the mechanical properties at 4.2 K and the strain effect of J_c .

REFERENCES

- [1] K. Watanabe, A. Hoshi, S. Awaji, K. Katagiri, K. Noto, K. Goto, M. Sugimoto, T. Saito, and O. Kohno, "Nb₃Sn multifilamentary wires with CuNb reinforcing stabilizer," *IEEE. Trans. Appl. Supercond.*, vol. 5, pp. 1905–1908, Mar. 1993.
- [2] S. Murase, S. Nakayama, Y. Yamada, K. Shimamura, M. Tezuka, N. Shiga, K. Watanabe, and N. Kobayashi, "Highly-strengthened alumina-copper alloy (Nb, Ti)₃Sn conductor fabricated by using tube process," *IEEE Trans. Magn.*, vol. 32, pp. 2937–2940, 1996.
- [3] Y. Murakami, T. Miyazaki, T. Hase, M. Shimada, Y. Kawate, T. Kiyoshi, K. Itoh, T. Takeuchi, F. Matsumoto, and H. Wada, "Dependence of superconducting and mechanical properties of Ta-reinforced Nb₃Sn superconductor on heat treatment condition," in *Proceedings of 59th Meeting on Cryogenics and Superconductivity*, 1998, p. 156.
- [4] H. Sakamoto, M. Higuchi, S. Endoh, Y. Nagasu, A. Kimura, K. Wada, S. Meguro, and M. Ikeda, "(Nb, Ti)₃Sn superconducting wire reinforced with Nb-Ti-Cu compound," *IEEE. Trans. Appl. Supercond.*, vol. 10, no. 1, pp. 1008–1011, Mar. 2000.
- [5] H. Sakamoto, S. Endoh, Y. Nagasu, K. Wada, A. Kimura, S. Meguro, S. Awaji, K. Watanabe, and M. Motokawa, "(Nb, Ti)₃Sn superconducting wire with CuNb reinforcing stabilizer," *IEEE. Trans. Appl. Supercond.*, vol. 12, no. 1, pp. 1067–1070, Mar. 2002.
- [6] K. Katagiri, K. Kasaba, Y. Shoji, K. Watanabe, A. Kimura, and S. Meguro, "Mechanical properties and stress/strain dependence of critical current in Nb₃Sn superconducting wires with NbTiCu reinforcement," in 2000 Annual Report, High Field Laboratory for Superconducting Materials: Institute of Materials Research, Tohoku University, 2000, pp. 65–67. In Japanese.