2,682 research outputs found

    Low-energy expansion formula for one-dimensional Fokker-Planck and Schr\"odinger equations with asymptotically periodic potentials

    Full text link
    We consider one-dimensional Fokker-Planck and Schr\"odinger equations with a potential which approaches a periodic function at spatial infinity. We extend the low-energy expansion method, which was introduced in previous papers, to be applicable to such asymptotically periodic cases. Using this method, we study the low-energy behavior of the Green function.Comment: author-created, un-copyedited version of an article accepted for publication in Journal of Physics A: Mathematical and Theoretica

    Origin of Native Driving Force in Protein Folding

    Full text link
    We derive an expression with four adjustable parameters that reproduces well the 20x20 Miyazawa-Jernigan potential matrix extracted from known protein structures. The numerical values of the parameters can be approximately computed from the surface tension of water, water-screened dipole interactions between residues and water and among residues, and average exposures of residues in folded proteins.Comment: LaTeX file, Postscript file; 4 pages, 1 figure (mij.eps), 2 table

    Lee surface flow phenomena over space shuttle at large angles of attack at M sub infinity equal 6

    Get PDF
    Surface pressure and heat transfer, flow separation, flow field, and oil flow patterns on the leeward side of a space shuttle orbiter model are investigated at a free stream Mach number of 6. The free stream Reynolds numbers are between 1.64 times 10 to the 7th power and 1.31 times 10 to the 8th power per meter, and the angle of attack is varied between 0 deg and 40 deg for the present experiments. The stagnation temperatures for the tests are approximately 500 K and the wall temperature is maintained at 290 K. Existing numerical methods of three-dimensional inviscid supersonic flow theory and compressible boundary layer theory are used to predict the present experimental measurements. Results of the present tests indicate two distinct types of flow separation and surface peak heating depending on the angle of attack

    Origin of Tc Enhancement Induced by Doping Yttrium and Hydrogen into LaFeAsO-based Superconductors: 57Fe, 75As, 139La, and 1H-NMR Studies

    Full text link
    We report our extensive 57Fe-, 75As-, 139La-, and 1H-NMR studies of La_{0.8}Y_{0.2}FeAsO_{1-y} (La_{0.8}Y_{0.2}1111) and LaFeAsO_{1-y}H_{x}(La1111H), where doping yttrium (Y) and hydrogen (H) into optimally doped LaFeAsO_{1-y} (La1111(OPT)) increases T_c=28 K to 34 and 32 K, respectively. In the superconducting (SC) state, the measurements of nuclear-spin lattice-relaxation rate 1/T_1 have revealed in terms of a multiple fully gapped s_\pm-wave model that the SC gap and T_c in La_{0.8}Y_{0.2}1111 become larger than those in La1111(OPT) without any change in doping level. In La1111H, the SC gap and T_c also increase slightly even though a decrease in carrier density and some disorders are significantly introduced. As a consequence, we suggest that the optimization of both the structural parameters and the carrier doping level to fill up the bands is crucial for increasing T_c among these La1111-based compounds through the optimization of the Fermi surface topology.Comment: 4 pages, 4 figures, 1 table, to be published in J. Phys. Soc. Jpn, Vol. 79, No. 1

    Mathematical Models and Exact Algorithms for the Colored Bin Packing Problem

    Full text link
    This paper focuses on exact approaches for the Colored Bin Packing Problem (CBPP), a generalization of the classical one-dimensional Bin Packing Problem in which each item has, in addition to its length, a color, and no two items of the same color can appear consecutively in the same bin. To simplify modeling, we present a characterization of any feasible packing of this problem in a way that does not depend on its ordering. Furthermore, we present four exact algorithms for the CBPP. First, we propose a generalization of Val\'erio de Carvalho's arc flow formulation for the CBPP using a graph with multiple layers, each representing a color. Second, we present an improved arc flow formulation that uses a more compact graph and has the same linear relaxation bound as the first formulation. And finally, we design two exponential set-partition models based on reductions to a generalized vehicle routing problem, which are solved by a branch-cut-and-price algorithm through VRPSolver. To compare the proposed algorithms, a varied benchmark set with 574 instances of the CBPP is presented. Results show that the best model, our improved arc flow formulation, was able to solve over 62% of the proposed instances to optimality, the largest of which with 500 items and 37 colors. While being able to solve fewer instances in total, the set-partition models exceeded their arc flow counterparts in instances with a very small number of colors

    Static response of Fermi liquids with tensor interactions

    Full text link
    We use Landau's theory of a normal Fermi liquid to derive expressions for the static response of a system with a general tensor interaction that conserves the total spin and the total angular momentum of the quasiparticle-quasihole pair. The magnetic susceptibility is calculated in detail, with the inclusion of the center of mass tensor and cross vector terms in addition to the exchange tensor one. We also introduce a new parametrization of the tensor Landau parameters which significantly reduces the importance of high angular harmonic contributions. For nuclear matter and neutron matter we find that the two most important effects of the tensor interaction are to give a contribution from multipair states and to renormalize the magnetic moments. Response to a weak probe may be calculated using similar methods, replacing the magnetic moments with the matrix elements of the weak charges
    corecore