10,032 research outputs found

    Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10,000+ atoms

    Get PDF
    The recent progress of linear-scaling or O(N) methods in the density functional theory (DFT) is remarkable. We expect that first-principles molecular dynamics (FPMD) simulations based on DFT can now treat more realistic and complex systems using the O(N) technique. However, very few examples of O(N) FPMD simulations exist so far and the information for the accuracy or reliability of the simulations is very limited. In this paper, we show that efficient and robust O(N) FPMD simulations are now possible by the combination of the extended Lagrangian Born-Oppenheimer molecular dynamics method, which was recently proposed by Niklasson et al (Phys. Rev. Lett. 100, 123004 (2008)), and the density matrix method as an O(N) technique. Using our linear-scaling DFT code Conquest, we investigate the reliable calculation conditions for the accurate O(N) FPMD and demonstrate that we are now able to do actual and reliable self-consistent FPMD simulation of a very large system containing 32,768 atoms.Comment: 26 pages, 10 figures, accepted by J. Chem. Theory Compu

    Supercooled Liquids Under Shear: Theory and Simulation

    Full text link
    We analyze the behavior of supercooled fluids under shear both theoretically and numerically. Theoretically, we generalize the mode-coupling theory of supercooled fluids to systems under stationary shear flow. Our starting point is the set of generalized fluctuating hydrodynamic equations with a convection term. A nonlinear integro-differential equation for the intermediate scattering function is constructed. This theory is applied to a two-dimensional colloidal suspension. The shear rate dependence of the intermediate scattering function and the shear viscosity is analyzed. We have also performed extensive numerical simulations of a two-dimensional binary liquid with soft-core interactions near, but above, the glass transition temperature. Both theoretical and numerical results show: (i) A drastic reduction of the structural relaxation time and the shear viscosity due to shear. Both the structural relaxation time and the viscosity decrease as γ˙−ν\dot{\gamma}^{-\nu} with an exponent ν≤1\nu \leq 1, where γ˙\dot{\gamma} is the shear rate. (ii) Almost isotropic dynamics regardless of the strength of the anisotropic shear flow.Comment: 14 pages, 14 figure

    Supercooled liquids under shear: A mode-coupling theory approach

    Full text link
    We generalize the mode-coupling theory of supercooled fluids to systems under stationary shear flow. Our starting point is the generalized fluctuating hydrodynamic equations with a convection term. The method is applied to a two dimensional colloidal suspension. The shear rate dependence of the intermediate scattering function and shear viscosity is analyzed. The results show a drastic reduction of the structural relaxation time due to shear and strong shear thinning behavior of the viscosity which are in qualitative agreement with recent simulations. The microscopic theory with minimal assumptions can explain the behavior far beyond the linear response regime.Comment: 4 pages, 2 figures, Proceedings to Slow Dynamics in Complex Systems November3-8, 2003 -- Sendai, Japa

    Supercooled Liquids under Shear: Computational Approach

    Full text link
    We have performed molecular dynamics simulations for a model two-dimensional soft-core mixture in a supercooled state. The mixture exhibits a slow structural relaxation in a quiescent state, however, the relaxation is much enhanced in sheared states. There observed surprisingly small anisotropy both in the coherent and incoherent density correlation functions even under extremely strong shear which is 10310^3 times faster than the structural relaxation rate. The present simulation results agree well with predictions of the recently developed mode-coupling theory in shear.Comment: 2 pages, 2 figure
    • …
    corecore