11,064 research outputs found

    Cold Adaptation of a Mesophilic Subtilisin-like Protease by Laboratory Evolution

    Get PDF
    Enzymes isolated from organisms native to cold environments generally exhibit higher catalytic efficiency at low temperatures and greater thermosensitivity than their mesophilic counterparts. In an effort to understand the evolutionary process and the molecular basis of cold adaptation, we have used directed evolution to convert a mesophilic subtilisin-like protease from Bacillus sphaericus, SSII, into its psychrophilic counterpart. A single round of random mutagenesis followed by recombination of improved variants yielded a mutant, P3C9, with a catalytic rate constant (kcat) at 10 °C 6.6 times and a catalytic efficiency (kcat/KM) 9.6 times that of wild type. Its half-life at 70 °C is 3.3 times less than wild type. Although there is a trend toward decreasing stability during the progression from mesophile to psychrophile, there is not a strict correlation between decreasing stability and increasing low temperature activity. A first generation mutant with a >2-fold increase in kcat is actually more stable than wild type. This suggests that the ultimate decrease in stability may be due to random drift rather than a physical incompatibility between low temperature activity and high temperature stability. SSII shares 77.4% identity with the naturally psychrophilic protease subtilisin S41. Although SSII and S41 differ at 85 positions, four amino acid substitutions were sufficient to generate an SSII whose low temperature activity is greater than that of S41. That none of the four are found in S41 indicates that there are multiple routes to cold adaptation

    Stable Marriage with Multi-Modal Preferences

    Full text link
    We introduce a generalized version of the famous Stable Marriage problem, now based on multi-modal preference lists. The central twist herein is to allow each agent to rank its potentially matching counterparts based on more than one "evaluation mode" (e.g., more than one criterion); thus, each agent is equipped with multiple preference lists, each ranking the counterparts in a possibly different way. We introduce and study three natural concepts of stability, investigate their mutual relations and focus on computational complexity aspects with respect to computing stable matchings in these new scenarios. Mostly encountering computational hardness (NP-hardness), we can also spot few islands of tractability and make a surprising connection to the \textsc{Graph Isomorphism} problem

    Isotropic photonic band gap and anisotropic structures in transmission spectra of two-dimensional 5-fold and 8-fold symmetric quasiperiodic photonic crystals

    Get PDF
    We measured and calculated transmission spectra of two-dimensional quasiperiodic photonic crystals (PCs) based on a 5-fold (Penrose) or 8-fold (octagonal) symmetric quasiperiodic pattern. The photonic crystal consisted of dielectric cylindrical rods in air placed normal to the basal plane on vertices of tiles composing the quasiperiodic pattern. An isotropic photonic band gap (PBG) appeared in the TM mode, where electric fields were parallel to the rods, even when the real part of a dielectric constant of the rod was as small as 2.4. An isotropic PBG-like dip was seen in tiny Penrose and octagonal PCs with only 6 and 9 rods, respectively. These results indicate that local multiple light scattering within the tiny PC plays an important role in the PBG formation. Besides the isotropic PBG, we found dips depending on the incident angle of the light. This is the first report of anisotropic structures clearly observed in transmission spectra of quasiperiodic PCs. Based on rod-number and rod-arrangement dependence, it is thought that the shapes and positions of the anisotropic dips are determined by global multiple light scattering covering the whole system. In contrast to the isotropic PBG due to local light scattering, we could not find any PBGs due to global light scattering even though we studied transmission spectra of a huge Penrose PC with 466 rods.Comment: One tex file for manuscript and 12 PNG files for figures consisting of Fig.1a-d, 2,3, ...

    Inverse versus Normal NiAs Structure as High-Pressure Phase of FeO and MnO

    Full text link
    The high-pressure phases of FeO and MnO were studied by the first principles calculations. The present theoretical study predicts that the high-pressure phase of MnO is a metallic normal B8 structure (nB8), while that of FeO should take the inverse B8 structure (iB8). The novel feature of the unique high-pressure phase of stoichiometric FeO is that the system should be a band insulator in the ordered antiferromagnetic (AF) state and that the existence of a band gap leads to special stability of the phase. The observed metallicity of the high-pressure and high-temperature phase of FeO may be caused by the loss of AF order and also by the itinerant carriers created by non-stoichiometry. Analysis of x-ray diffraction experiments provides a further support to the present theoretical prediction for both FeO and MnO. Strong stability of the high-pressure phase of FeO will imply possible important roles in Earth's core.Comment: 7 pages, 3 figures and 1 table; submitted to "Nature

    Equivalence between Schwinger and Dirac schemes of quantization

    Full text link
    This paper introduces the modified version of Schwinger's quantization method, in which the information on constraints and the choice of gauge conditions are included implicitly in the choice of variations used in quantization scheme. A proof of equivalence between Schwinger- and Dirac-methods for constraint systems is given.Comment: 12pages, No figures, Latex, The proof is improved and one reference is adde

    Novel phase diagram for antiferromagnetism and superconductivity in pressure-induced heavy-fermion superconductor Ce2_2RhIn8_8 probed by In-NQR

    Full text link
    We present a novel phase diagram for the antiferromagnetism and superconductivity in Ce2_2RhIn8_8 probed by In-NQR studies under pressure (PP). The quasi-2D character of antiferromagnetic spin fluctuations in the paramagnetic state at PP = 0 evolves into a 3D character because of the suppression of antiferromagnetic order for P>PQCPP > P_{\rm QCP}\sim 1.36 GPa (QCP: antiferromagnetic quantum critical point). Nuclear-spin-lattice-relaxation rate 1/T11/T_1 measurements revealed that the superconducting order occurs in the PP range 1.36 -- 1.84 GPa, with maximum TcT_c\sim 0.9 K around PQCPP_{\rm QCP}\sim 1.36 GPa.Comment: 5 pages, 5 figures, submitted to PR

    Crystal-field-induced magnetostrictions in the spin reorientation process of Nd2_2Fe14_{14}B-type compounds

    Full text link
    Volume expansion ΔV/V\Delta V / V associated with the spin reorientation process of Nd2_2Fe14_{14}B-type compounds has been investigated in terms of simple crystalline-electric-field (CEF) model. In this system, ΔV/V\Delta V / V is shown to be a direct measure of second order CEF energy. Calculated anomalies in ΔV/V\Delta V / V associated with the first-order magnetization process of Nd2_2Fe14_{14}B are presented, which well reproduced the observations.Comment: 2 pages, 2 figures, to appear in J. Magn. Magn. Mate

    Structure and magnetism in nanocrystalline Ca(La)B6_6 films

    Full text link
    Nanocrystalline films of La-doped CaB6_6 have been fabricated by using a rf-magnetron sputtering. Lattice expansion of up to 6% with respect to the bulk value was observed along the direction perpendicular to the film plane, which arises from the trapping of Ar gas into the film. Large ferromagnetic moment of 3 ~ 4 Bohr magneton per La has been observed in some La-doped films only when the lattice expansion rate is larger than 2.5%.Comment: 2 pages, 2 figures, to appear in J. Magn. Magn. Mate
    corecore