41 research outputs found

    Differential role of MLKL in alcohol-associated and non-alcohol-associated fatty liver diseases in mice and humans

    Get PDF
    Hepatocellular death contributes to progression of alcohol-associated (ALD-associated) and non-alcohol-associated (NAFL/NASH) liver diseases. However, receptor-interaction protein kinase 3 (RIP3), an intermediate in necroptotic cell death, contributes to injury in murine models of ALD but not NAFL/NASH. We show here that a differential role for mixed-lineage kinase domain-like protein (MLKL), the downstream effector of RIP3, in murine models of ALD versus NAFL/NASH and that RIP1-RIP3-MLKL can be used as biomarkers to distinguish alcohol-associated hepatitis (AH) from NASH. Phospho-MLKL was higher in livers of patients with NASH compared with AH or healthy controls (HCs). MLKL expression, phosphorylation, oligomerization, and translocation to plasma membrane were induced in WT mice fed diets high in fat, fructose, and cholesterol but not in response to Gao-binge (acute on chronic) ethanol exposure. Mlkl-/- mice were not protected from ethanol-induced hepatocellular injury, which was associated with increased expression of chemokines and neutrophil recruitment. Circulating concentrations of RIP1 and RIP3, but not MLKL, distinguished patients with AH from HCs or patients with NASH. Taken together, these data indicate that MLKL is differentially activated in ALD/AH compared with NAFL/NASH in both murine models and patients. Furthermore, plasma RIP1 and RIP3 may be promising biomarkers for distinguishing AH and NASH

    Successful esophageal bypass surgery in a patient with a large tracheoesophageal fistula following endotracheal stenting and chemoradiotherapy for advanced esophageal cancer: case report

    Get PDF
    A 63-year-old man with esophageal achalasia for more than 20 years complained of respiratory distress. He was admitted as an emergency to the referral hospital three months previously. Computed tomography revealed tracheobronchial stenosis due to advanced esophageal cancer with tracheal invasion. He underwent tracheobronchial stenting and chemoradiotherapy. A large tracheoesophageal fistula (TEF) developed after irradiation (18 Gy) and chemotherapy, and he was unable to eat. Thereafter, he was referred to our hospital, where we performed esophageal bypass surgery using a gastric conduit. A percutaneous cardiopulmonary support system was prepared due to the risk of airway obstruction during anesthesia. A small-diameter tracheal tube inserted into the stent achieved ordinary respiratory management. No anesthesia-related problems were encountered. Oral intake commenced on postoperative day 9. He was discharged on postoperative day 23 and was able to take in sustenance orally right up to the last moment of his life. Esophageal bypass under general anesthesia can be performed in patients with large TEF with sufficient preparation for anesthetic management

    Targeted Therapeutics and Novel Signaling Pathways in Non-Alcohol-Associated Fatty Liver/Steatohepatitis (NAFL/NASH)

    Get PDF
    Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH

    Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease

    Get PDF
    Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD

    Macrophage-Derived Mlkl in Alcohol-Associated Liver Disease: Regulation of Phagocytosis

    Get PDF
    BACKGROUND AND AIMS: Mixed lineage kinase domain-like pseudokinase (MLKL), a key terminal effector of necroptosis, also plays a role in intracellular vesicle trafficking that is critical for regulating liver inflammation and injury in alcohol-associated liver disease (ALD). Although receptor interacting protein kinase 3 (Rip3)-/- mice are completely protected from ethanol-induced liver injury, Mlkl-/- mice are only partially protected. Therefore, we hypothesized that cell-specific functions of MLKL may contribute to ethanol-induced injury. APPROACH AND RESULTS: Bone marrow transplants between Mlkl-/- mice and littermates were conducted to distinguish the role of myeloid versus nonmyeloid Mlkl in the Gao-binge model of ALD. Ethanol-induced hepatic injury, steatosis, and inflammation were exacerbated in Mlkl-/- →wild-type (WT) mice, whereas Mlkl deficiency in nonmyeloid cells (WT→ Mlkl-/- ) had no effect on Gao-binge ethanol-induced injury. Importantly, Mlkl deficiency in myeloid cells exacerbated ethanol-mediated bacterial burden and accumulation of immune cells in livers. Mechanistically, challenging macrophages with lipopolysaccharide (LPS) induced signal transducer and activator of transcription 1-mediated expression and phosphorylation of MLKL, as well as translocation and oligomerization of MLKL to intracellular compartments, including phagosomes and lysosomes but not plasma membrane. Importantly, pharmacological or genetic inhibition of MLKL suppressed the phagocytic capability of primary mouse Kupffer cells (KCs) at baseline and in response to LPS with/without ethanol as well as peripheral monocytes isolated from both healthy controls and patients with alcohol-associated hepatitis. Further, in vivo studies revealed that KCs of Mlkl-/- mice phagocytosed fewer bioparticles than KCs of WT mice. CONCLUSION: Together, these data indicate that myeloid MLKL restricts ethanol-induced liver inflammation and injury by regulating hepatic immune cell homeostasis and macrophage phagocytosis

    Gut Microbial Trimethylamine Is Elevated in Alcohol-Associated Hepatitis and Contributes to Ethanol-Induced Liver Injury in Mice

    Get PDF
    There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. We show the gut microbial choline metabolite TMA is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury

    Skin advanced glycation end product accumulation and muscle strength among adult men

    Get PDF
    Aging is associated with decreased skeletal muscle function. Increased levels of advanced glycation end products (AGEs) in skeletal muscle tissue are observed with advancing age and in diabetes. Although serum AGE level is negatively associated with grip strength in elderly people, it is unknown whether this association is present in adult males. To determine the relationship between AGE accumulation in tissue and muscle strength and power among Japanese adult men. Skin autofluorescence (AF) (a noninvasive method for measuring tissue AGEs), grip strength (n = 232), and leg extension power (n = 138) were measured in Japanese adult men [median (interquartile range) age, 46.0 (37.0, 56.0) years]. After adjustment for potential confounders, the adjusted means [95% confidence interval (CI)] for grip strength across the tertiles of skin AF were 44.5 (43.2, 45.9) kg for the lowest tertile, 42.0 (40.6, 43.3) kg for the middle tertile, and 41.7 (40.3, 43.1) kg for the highest tertile (P for trend < 0.01). Moreover, the adjusted geometric means (95% CI) of leg extension power across the tertiles of skin AF were 17.8 (16.6, 19.1) W/kg for the lowest tertile, 17.5 (16.4, 18.7) W/kg for the middle tertile, and 16.0 (14.9, 17.1) W/kg for the highest tertile (P for trend = 0.04). Among Japanese adult men, participants with higher skin AF had lower muscle strength and power, indicating a relationship between AGE accumulation and muscle strength and power. A long-term prospective study is required to clarify the causality
    corecore