627 research outputs found
Direct Observation of Sub-picosecond Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy
Efficient charge separation at the interfaces between the perovskite and with
the carrier transport layers is crucial for perovskite solar cells to achieve
high power conversion efficiency. We systematically investigate the hole
injection dynamics from MAPbI perovskite to three typical hole transport
materials (HTMs) PEDOT:PSS, PTAA and NiO by means of pump-probe
transmission measurements. We photoexcite only near the MAPbI/HTM interface
or near the back surface, and measure the differential transient transmission
between the two excitation configurations to extract the carrier dynamics
directly related to the hole injection. The differential transmission signals
directly monitor the hole injections to PTAA and PEDOT:PSS being complete
within 1 and 2 ps, respectively, and that to NiO exhibiting an additional
slow process of 40 ps time scale. The obtained injection dynamics are discussed
in comparison with the device performance of the solar cells containing the
same MAPbI/HTM interfaces.Comment: 5 pages, 5 figure
Strangeness production in antiproton-nucleus collisions
Antiproton annihilations on nuclei provide a very interesting way to study
the behaviour of strange particles in the nuclear medium. In low energy annihilations, the hyperons are produced mostly by strangeness exchange
mechanisms. Thus, hyperon production in interactions is very
sensitive to the properties of the antikaon-nucleon interaction in nuclear
medium. Within the Giessen Boltzmann-Uehling-Uhlenbeck transport model (GiBUU),
we analyse the experimental data on and production in collisions at GeV/c. A satisfactory overall agreement is
reached, except for the production in Ne collisions at
MeV/c, where we obtain substantially larger
production rate. We also study the hyperon production, important in view
of the forthcoming experiments at FAIR and J-PARC.Comment: 8 pages, 4 figures, invited talk given by A.B. Larionov at the 10th
International Conference on Low Energy Antiproton Physics (LEAP2011),
Vancouver, Canada, Apr 27 - May 1, 2011, Hyperfine Interact. in pres
Field-induced metal-insulator transition and switching phenomenon in correlated insulators
We study the nonequilibrium switching phenomenon associated with the
metal-insulator transition under electric field E in correlated insulator by a
gauge-covariant Keldysh formalism. Due to the feedback effect of the resistive
current I, this occurs as a first-order transition with a hysteresis of I-V
characteristics having a lower threshold electric field (\sim 10^4 Vcm^{-1})
much weaker than that for the Zener breakdown. It is also found that the
localized mid-gap states introduced by impurities and defects act as hot spots
across which the resonant tunneling occurs selectively, which leads to the
conductive filamentary paths and reduces the energy cost of the switching
function.Comment: 5 pages, 3 figures. A study on the metal-insulator transition in
correlated insulators was adde
Near-Optimal Scheduling for LTL with Future Discounting
We study the search problem for optimal schedulers for the linear temporal
logic (LTL) with future discounting. The logic, introduced by Almagor, Boker
and Kupferman, is a quantitative variant of LTL in which an event in the far
future has only discounted contribution to a truth value (that is a real number
in the unit interval [0, 1]). The precise problem we study---it naturally
arises e.g. in search for a scheduler that recovers from an internal error
state as soon as possible---is the following: given a Kripke frame, a formula
and a number in [0, 1] called a margin, find a path of the Kripke frame that is
optimal with respect to the formula up to the prescribed margin (a truly
optimal path may not exist). We present an algorithm for the problem; it works
even in the extended setting with propositional quality operators, a setting
where (threshold) model-checking is known to be undecidable
Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects
We calculate the interaction between two spherical colloidal particles
embedded in the isotropic phase of a nematogenic liquid. The surface of the
particles induces wetting nematic coronas that mediate an elastic interaction.
In the weak wetting regime, we obtain exact results for the interaction energy
and the texture, showing that defects and biaxiality arise, although they are
not topologically required. We evidence rich behaviors, including the
possibility of reversible colloidal aggregation and dispersion. Complex
anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure
Photoinduced IR absorption in (La(1-x)Sr(x)Mn)(1-\delta)O3: changes of the anti-Jahn-Teller polaron binding energy with doping
Photoinduced IR absorption was measured in (La(1-x)Sr(x)Mn)(1-\delta)O3. A
midinfrared peak centered at ~ 5000 cm was observed in the x=0
antiferromagnetic sample. The peak diminishes and softens as hole doping is
increased. The origin of the photoinduced absorption peak is atributted to the
photon assisted hopping of anti-Jahn-Teller polarons formed by photoexcited
charge carriers, whose binding energy decreases with increasing hole doping.
The shape of the peak indicates that the polarons are small.Comment: 5 pages, 3 figures, submitted to PR
Phase Separation and the Low-Field Bulk Magnetic Properties of Pr0.7Ca0.3MnO3
We present a detailed magnetic study of the perovskite manganite
Pr0.7Ca0.3MnO3 at low temperatures including magnetization and a.c.
susceptibility measurements. The data appear to exclude a conventional spin
glass phase at low fields, suggesting instead the presence of correlated
ferromagnetic clusters embedded in a charge-ordered matrix. We examine the
growth of the ferromagnetic clusters with increasing magnetic field as they
expand to occupy almost the entire sample at H ~ 0.5 T. Since this is well
below the field required to induce a metallic state, our results point to the
existence of a field-induced ferromagnetic insulating state in this material.Comment: 15 pages with figures, submitted to Physical Review
Time-temperature superposition in viscous liquids
Dielectric relaxation measurements on supercooled triphenyl phosphite show
that at low temperatures time-temperature superposition (TTS) is accurately
obeyed for the primary (alpha) relaxation process. Measurements on 6 other
molecular liquids close to the calorimetric glass transition indicate that TTS
is linked to an high-frequency decay of the alpha loss, while
the loss peak width is nonuniversal.Comment: 4 page
Breakdown of the Mott insulator: Exact solution of an asymmetric Hubbard model
The breakdown of the Mott insulator is studied when the dissipative tunneling
into the environment is introduced to the system. By exactly solving the
one-dimensional asymmetric Hubbard model, we show how such a breakdown of the
Mott insulator occurs. As the effect of the tunneling is increased, the Hubbard
gap is monotonically decreased and finally disappears, resulting in the
insulator-metal transition. We discuss the origin of this quantum phase
transition in comparison with other non-Hermitian systems recently studied.Comment: 7 pages, revte
- …