627 research outputs found

    Direct Observation of Sub-picosecond Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy

    Full text link
    Efficient charge separation at the interfaces between the perovskite and with the carrier transport layers is crucial for perovskite solar cells to achieve high power conversion efficiency. We systematically investigate the hole injection dynamics from MAPbI3_3 perovskite to three typical hole transport materials (HTMs) PEDOT:PSS, PTAA and NiOx_x by means of pump-probe transmission measurements. We photoexcite only near the MAPbI3_3/HTM interface or near the back surface, and measure the differential transient transmission between the two excitation configurations to extract the carrier dynamics directly related to the hole injection. The differential transmission signals directly monitor the hole injections to PTAA and PEDOT:PSS being complete within 1 and 2 ps, respectively, and that to NiOx_x exhibiting an additional slow process of 40 ps time scale. The obtained injection dynamics are discussed in comparison with the device performance of the solar cells containing the same MAPbI3_3/HTM interfaces.Comment: 5 pages, 5 figure

    Strangeness production in antiproton-nucleus collisions

    Full text link
    Antiproton annihilations on nuclei provide a very interesting way to study the behaviour of strange particles in the nuclear medium. In low energy pˉ\bar p annihilations, the hyperons are produced mostly by strangeness exchange mechanisms. Thus, hyperon production in pˉA\bar p A interactions is very sensitive to the properties of the antikaon-nucleon interaction in nuclear medium. Within the Giessen Boltzmann-Uehling-Uhlenbeck transport model (GiBUU), we analyse the experimental data on Λ\Lambda and KS0K^0_S production in pˉA\bar p A collisions at plab=0.24p_{\rm lab}=0.2-4 GeV/c. A satisfactory overall agreement is reached, except for the KS0K^0_S production in pˉ+20\bar p+^{20}Ne collisions at plab=608p_{\rm lab}=608 MeV/c, where we obtain substantially larger KS0K^0_S production rate. We also study the Ξ\Xi hyperon production, important in view of the forthcoming experiments at FAIR and J-PARC.Comment: 8 pages, 4 figures, invited talk given by A.B. Larionov at the 10th International Conference on Low Energy Antiproton Physics (LEAP2011), Vancouver, Canada, Apr 27 - May 1, 2011, Hyperfine Interact. in pres

    Field-induced metal-insulator transition and switching phenomenon in correlated insulators

    Full text link
    We study the nonequilibrium switching phenomenon associated with the metal-insulator transition under electric field E in correlated insulator by a gauge-covariant Keldysh formalism. Due to the feedback effect of the resistive current I, this occurs as a first-order transition with a hysteresis of I-V characteristics having a lower threshold electric field (\sim 10^4 Vcm^{-1}) much weaker than that for the Zener breakdown. It is also found that the localized mid-gap states introduced by impurities and defects act as hot spots across which the resonant tunneling occurs selectively, which leads to the conductive filamentary paths and reduces the energy cost of the switching function.Comment: 5 pages, 3 figures. A study on the metal-insulator transition in correlated insulators was adde

    Near-Optimal Scheduling for LTL with Future Discounting

    Full text link
    We study the search problem for optimal schedulers for the linear temporal logic (LTL) with future discounting. The logic, introduced by Almagor, Boker and Kupferman, is a quantitative variant of LTL in which an event in the far future has only discounted contribution to a truth value (that is a real number in the unit interval [0, 1]). The precise problem we study---it naturally arises e.g. in search for a scheduler that recovers from an internal error state as soon as possible---is the following: given a Kripke frame, a formula and a number in [0, 1] called a margin, find a path of the Kripke frame that is optimal with respect to the formula up to the prescribed margin (a truly optimal path may not exist). We present an algorithm for the problem; it works even in the extended setting with propositional quality operators, a setting where (threshold) model-checking is known to be undecidable

    Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects

    Full text link
    We calculate the interaction between two spherical colloidal particles embedded in the isotropic phase of a nematogenic liquid. The surface of the particles induces wetting nematic coronas that mediate an elastic interaction. In the weak wetting regime, we obtain exact results for the interaction energy and the texture, showing that defects and biaxiality arise, although they are not topologically required. We evidence rich behaviors, including the possibility of reversible colloidal aggregation and dispersion. Complex anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure

    Photoinduced IR absorption in (La(1-x)Sr(x)Mn)(1-\delta)O3: changes of the anti-Jahn-Teller polaron binding energy with doping

    Full text link
    Photoinduced IR absorption was measured in (La(1-x)Sr(x)Mn)(1-\delta)O3. A midinfrared peak centered at ~ 5000 cm1^{-1} was observed in the x=0 antiferromagnetic sample. The peak diminishes and softens as hole doping is increased. The origin of the photoinduced absorption peak is atributted to the photon assisted hopping of anti-Jahn-Teller polarons formed by photoexcited charge carriers, whose binding energy decreases with increasing hole doping. The shape of the peak indicates that the polarons are small.Comment: 5 pages, 3 figures, submitted to PR

    Phase Separation and the Low-Field Bulk Magnetic Properties of Pr0.7Ca0.3MnO3

    Full text link
    We present a detailed magnetic study of the perovskite manganite Pr0.7Ca0.3MnO3 at low temperatures including magnetization and a.c. susceptibility measurements. The data appear to exclude a conventional spin glass phase at low fields, suggesting instead the presence of correlated ferromagnetic clusters embedded in a charge-ordered matrix. We examine the growth of the ferromagnetic clusters with increasing magnetic field as they expand to occupy almost the entire sample at H ~ 0.5 T. Since this is well below the field required to induce a metallic state, our results point to the existence of a field-induced ferromagnetic insulating state in this material.Comment: 15 pages with figures, submitted to Physical Review

    Time-temperature superposition in viscous liquids

    Get PDF
    Dielectric relaxation measurements on supercooled triphenyl phosphite show that at low temperatures time-temperature superposition (TTS) is accurately obeyed for the primary (alpha) relaxation process. Measurements on 6 other molecular liquids close to the calorimetric glass transition indicate that TTS is linked to an ω1/2\omega^{-1/2} high-frequency decay of the alpha loss, while the loss peak width is nonuniversal.Comment: 4 page

    Breakdown of the Mott insulator: Exact solution of an asymmetric Hubbard model

    Full text link
    The breakdown of the Mott insulator is studied when the dissipative tunneling into the environment is introduced to the system. By exactly solving the one-dimensional asymmetric Hubbard model, we show how such a breakdown of the Mott insulator occurs. As the effect of the tunneling is increased, the Hubbard gap is monotonically decreased and finally disappears, resulting in the insulator-metal transition. We discuss the origin of this quantum phase transition in comparison with other non-Hermitian systems recently studied.Comment: 7 pages, revte
    corecore