39 research outputs found

    Intrafamilial clustering of genotypes of hepatitis C virus RNA.

    Get PDF
    Hepatitis C virus (HCV)-RNA in the blood was measured by polymerase chain reaction (PCR) in 37 subjects from eight families in which 2 or more persons tested seropositive for antibodies against C100-3 or CP9. HCV-RNA was positive in 17 of 37 subjects. Two or more HCV-RNA-positive subjects were observed in six of the families. Intrafamilial HCV infection was studied by determining the HCV-RNA type (I, II, III or IV) by PCR using type-specific primers. In two families, all of the subjects showed type III infection, and in three other families, all of the subjects showed type II infection, with different types of HCV infections being observed in only one family. The HCV type was uniform in all but one. These findings suggest a possibility of intrafamilial infection between husbands and wives and between members of the same household.</p

    Hepatitis C virus antibody titration in patients with chronic hepatitis C, before and after interferon treatment.

    Get PDF
    We measured hepatitis C virus antibody titers in 13 patients with chronic hepatitis C to determine whether titration of hepatitis C virus antibody was useful or not, to predict and evaluate the efficacy of interferon (IFN) treatment. During administration of IFN, hepatitis C virus titers declined in all patients. Antibody titers performed before treatment as well as just at the end of treatment did not correlate with change of the alanine aminotransferase levels during administration of IFN. Antibody titers declined continuously after treatment in 5 patients with normal alanine amino-transferase levels for over 6 months after discontinuation of IFN. Antibody titers rose again in 6 patients whose alanine aminotransferase levels fluctuated after treatment. An exceptional pattern of change occurred in 2 patients whose antibody titers declined continuously although their alanine aminotransferase levels fluctuated after treatment. Repeated titration of hepatitis C virus antibody appears to be useful for evaluating the long-term efficacy of IFN treatment.</p

    Polycystic Kidney Disease in the Medaka (Oryzias latipes) pc Mutant Caused by a Mutation in the Gli-Similar3 (glis3) Gene

    Get PDF
    Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients

    Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium

    Get PDF
    Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosphate (Pi) homeostasis in mice. Following Cd injection into WT mice, plasma FGF23 concentration was significantly increased. Urinary Pi excretion levels were significantly higher in Cd-injected WT mice than in control group. Plasma Pi concentration decreased only slightly compared with control group. No change was observed in plasma parathyroid hormone and 1,25-dihydroxy vitamin D3 in both group of mice. We observed a decrease in phosphate transport activity and also decrease in expression of renal phosphate transporter SLC34A3 [NaPi-IIc/NPT2c], but not SLC34A1 [NaPi-IIa/NPT2a]. Furthermore, we examined the effect of Cd on Npt2c in Npt2a-knockout (KO) mice which expresses Npt2c as a major NaPi co-transporter. Injecting Cd to Npt2aKO mice induced significant increase in plasma FGF23 concentration and urinary Pi excretion levels. Furthermore, we observed a decrease in phosphate transport activity and renal Npt2c expression in Cd-injected Npt2a KO mice. The present study suggests that hypophosphatemia induced by Cd may be closely associated with the FGF23/klotho axis

    Protein–protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy

    Get PDF
    Here, we describe novel puromycin derivatives conjugated with iminobiotin and a fluorescent dye that can be linked covalently to the C-terminus of full-length proteins during cell-free translation. The iminobiotin-labeled proteins can be highly purified by affinity purification with streptavidin beads. We confirmed that the purified fluorescence-labeled proteins are useful for quantitative protein–protein interaction analysis based on fluorescence cross-correlation spectroscopy (FCCS). The apparent dissociation constants of model protein pairs such as proto-oncogenes c-Fos/c-Jun and archetypes of the family of Ca2+-modulated calmodulin/related binding proteins were in accordance with the reported values. Further, detailed analysis of the interactions of the components of polycomb group complex, Bmi1, M33, Ring1A and RYBP, was successfully conducted by means of interaction assay for all combinatorial pairs. The results indicate that FCCS analysis with puromycin-based labeling and purification of proteins is effective and convenient for in vitro protein–protein interaction assay, and the method should contribute to a better understanding of protein functions by using the resource of available nucleotide sequences

    Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c

    Get PDF
    Mutations in the SLC34A3 gene, a sodium-dependent inorganic phosphate (Pi) cotransporter, also referred to as NaPi IIc, causes hereditary hypophosphatemic rickets with hypercalciuria (HHRH), an autosomal recessive disorder. In human and rodent, NaPi IIc is mainly localized in the apical membrane of renal proximal tubular cells. In this study, we identified mouse NaPi IIc variant (Npt2c-v1) that lacks the part of the exon 3 sequence that includes the assumed translation initiation site of Npt2c. Microinjection of mouse Npt2c-v1 cRNA into Xenopus oocytes demonstrated that Npt2c-v1 showed sodium-dependent Pi cotransport activity. The characterization of pH dependency showed activation at extracellular alkaline-pH. Furthermore, Npt2c-v1 mediated Pi transport activity was significantly higher at any pH value than those of Npt2c. In an in vitro study, the localization of the Npt2c-v1 protein was detected in the apical membrane in opossum kidney cells. The expression of Npt2c-v1 mRNA was detected in the heart, spleen, testis, uterus, placenta, femur, cerebellum, hippocampus, diencephalon and brain stem of mouse. Using mouse bone primary cultured cells, we showed the expression of Npt2c-v1 mRNA. In addition, the Npt2c protein was detected in the spermatozoa head. Thus, Npt2c-v1 was expressed in extra-renal tissues such as epididymal spermatozoa and may function as a sodium-dependent phosphate transporter

    EWSR1-ATF1融合遺伝子を持つ歯原性明細胞癌細胞株の樹立と性状解析

    Get PDF
    Objective: Clear cell odontogenic carcinoma (CCOC) is a rare malignant odontogenic tumor (MOT) characterized by sheets and lobules of vacuolated and clear cells. To understand the biology of CCOC, we established a new cell line, CCOC-T, with EWSR1-ATF1 fusion gene from a mandible tumor with distant metastasis and characterized this cell line. Materials and methods: To detect the EWSR1-ATF1 fusion gene, we used three CCOC cases, including the present case, by RT-PCR and FISH analysis. We characterized established CCOC-T cells by checking cell growth, invasion and the expression of odontogenic factors and bone-related factors. Moreover, the gene expression profile of CCOC-T cells was examined by microarray analysis. Results: Histologically, the primary tumor was comprised of cords and nests containing clear and squamoid cells separated by fibrous septa. In addition, ameloblastomatous islands with palisaded peripheral cells were observed, indicating probable odontogenic origin. This tumor expressed the fusion gene EWSR1-ATF1, which underlies the etiology of hyalinizing clear cell carcinoma (HCCC) and potentially that of CCOC. We found a breakpoint in the EWSR1-ATF1 fusion to be the same as that reported in HCCC. Established CCOC-T cells grew extremely slowly, but the cells showed highly invasive activity. Moreover, CCOC-T cells expressed bone-related molecules, odontogenic factors, and epithelial mesenchymal transition (EMT)-related molecules. Conclusion: To the best of our knowledge, this is the first report on the establishment of a CCOC cell line. CCOC-T cells serve as a useful in vitro model for understanding the pathogenesis and nature of MOT

    DECIGO and DECIGO pathfinder

    Full text link

    Feedforward impedance control efficiently reduce motor variability

    Get PDF
    Despite the existence of neural noise, which leads variability in motor commands, the central nervous system can effectively reduce movement variance at the end effector to meet task requirements. Although online correction based on feedback information is essential for reducing error, feedforward impedance control is another way to regulate motor variability. This Update Article reviews key studies examining the relation between task constraints and impedance control for human arm movement. When a smaller reaching target is given as a task constraint, flexor and extensor muscles are co-activated, and positional variance is decreased around the task constraint. Trial-by-trial muscle activations revealed no on-line feedback correction, indicating that humans are able to regulate their impedance in advance. These results demonstrate that not only on-line feedback correction, but also feedforward impedance control, helps reduce the motor variability caused by internal noise to realize dexterous movements of human arms. A computational model of movement planning considering the presence of signal-dependent noise provides a unifying framework that potentially accounts for optimizing impedance to maximize accuracy. A recently proposed learning algorism formulated as a V-shaped learning function explains how the central nervous system acquires impedance to optimize accuracy as well as stability and efficiency
    corecore